

The Guidance Programming Language

GPL Dictionary Pages

Version 2.0.1, March 19, 2008

P/N: GPL0-DI-00110

Precise Automation Inc., 727 Filip Road, Los Altos, California 94024
www.preciseautomation.com

http://www.preciseautomation.com

Document Content

The information contained herein is the property of Precise Automation Inc., and may not be copied,
photocopied, reproduced, translated, or converted to any electronic or machine-readable form in whole or
in part without the prior written approval of Precise Automation Inc. The information herein is subject to
change without notice and should not be construed as a commitment by Precise Automation Inc. This
information is periodically reviewed and revised. Precise Automation Inc., assumes no responsibility for
any errors or omissions in this document.

Copyright © 2004-2008 by Precise Automation Inc. All rights reserved.

The Precise Logo is a registered trademark of Precise Automation Inc.

Trademarks

Guidance 3400, Guidance 3300, Guidance 3200, Guidance 2400, Guidance 1400, Guidance 1300,
Guidance 1200, Guidance Controller, Guidance Development Environment, GDE, Guidance
Development Suite, GDS, Guidance Dispense, Guidance Programming Language, GPL, Guidance
System, PrecisePlace 1300, PrecisePlace 1400, PrecisePlace 2300, PrecisePlace 2400, PreciseFlex,
PrecisePower 500, PrecisePower 2000, PreciseVision, RIO are either registered or trademarks of Precise
Automation Inc., and may be registered in the United States or in other jurisdictions including
internationally. Other product names, logos, designs, titles, words or phrases mentioned within this
publication may be trademarks, service marks, or trade names of Precise Automation Inc. or other entities
and may be registered in certain jurisdictions including internationally.

Any trademarks from other companies used in this publication are the property of those respective
companies. In particular, Visual Basic, Visual Basic 6 and Visual Basic.NET are trademarks of Microsoft
Inc.

Disclaimer

PRECISE AUTOMATION INC., MAKES NO WARRANTIES, EITHER EXPRESSLY OR IMPLIED,
REGARDING THE DESCRIBED PRODUCTS, THEIR MERCHANTABILITY OR FITNESS FOR ANY
PARTICULAR PURPOSE. THIS EXCLUSION OF IMPLIED WARRANTIES MAY NOT APPLY TO YOU.
PLEASE SEE YOUR SALES AGREEMENT FOR YOUR SPECIFIC WARRANTY TERMS.

Precise Automation Inc.
727 Filip Road
Los Altos, California 94024
U.S.A.
www.preciseautomation.com

http://www.preciseautomation.com

Warning Labels

The following warning and caution labels are utilized throughout this manual to convey critical information
required for the safe and proper operation of the hardware and software. It is extremely important that all
such labels are carefully read and complied with in full to prevent personal injury and damage to the
equipment.

There are four levels of special alert notation used in this manual. In descending order of importance,
they are:

DANGER: This indicates an imminently hazardous situation,
which, if not avoided, will result in death or serious injury.

WARNING: This indicates a potentially hazardous situation, which,
if not avoided, could result in serious injury or major damage to the
equipment.

CAUTION: This indicates a situation, which, if not avoided, could
result in minor injury or damage to the equipment.

NOTE: This provides supplementary information, emphasizes a
point or procedure, or gives a tip for easier operation

iv

Table Of Contents

GPL Dictionary Pages Summary ... 1

Array Class .. 3

Array Class Summary 3

array.GetUpperBound Property 4

array.Length Property 5

array.Rank Property 6

Console Class ... 7

Console Class Summary 7

Console.Write Method 8

Console.WriteLine Method 9

Controller Class .. 10

Controller Class Summary 10

Controller.ErrorLog Property 12

Controller.Load Method 14

Controller.PDb Property 15

Controller.PDbNum Property 17

Controller.PowerEnabled Property 19

Controller.PowerState Property 21

Controller.RecordButton Property 23

Controller.ShowDialog Method 24

Controller.ShowDialogMCP Method 27

Controller.SleepTick Method 30

Controller.SoftEStop Property 31

Controller.SystemMessage Method 32

Controller.Tick Property 33

Controller.Timer Property 34

Controller.Unload Method 35

Exception Handling... 36

Exception Handling Summary 36

Catch Statement 38

End Try Statement 39

Table Of Contents

v

Exit Try Statement 40

Finally Statement 41

Throw Statement 42

Try..Catch..Finally..End Try Statements 44

exception_object.Axis Property 47

exception_object.Clone Method 48

exception_object.ErrorCode Property 49

exception_object.Message Method 50

exception_object.Qualifier Property 51

exception_object.RobotError Property 52

exception_object.RobotNum Property 53

File and Serial I/O Classes ... 54

File and Serial I/O Classes Summary 54

File.CreateDirectory Method 56

File.DeleteDirectory Method 57

File.DeleteFile Method 58

File.GetDirectories Method 59

File.GetFiles Method 60

New StreamReader Constructor 61

streamreader_object.Close Method 62

streamreader_object.Peek Method 63

streamreader_object.Read Method 64

streamreader_object.ReadLine Method 65

New StreamWriter Constructor 66

streamwriter_object.AutoFlush Property 67

streamwriter_object.Close Method 68

streamwriter_object.Flush Method 69

streamwriter_object.NewLine Property 70

streamwriter_object.Write Method 71

streamwriter_object.WriteLine Method 72

Functions ... 73

Function Summary 73

CBool Function 74

CByte Function 76

CDbl Function 78

GPL Dictionary Pages

vi

CInt Function 80

CShort Function 82

CSng Function 84

CStr Function 86

Fix Function 88

Hex Function 90

Int Function 92

Rnd Function 94

Location Class... 96

Location Class Summary 96

location_object.Angle Property 98

location_object.Angles Method 99

location_object.Clone Method 100

location_object.Config Property 101

Location.Distance Method 103

location_object.Here Method 104

location_object.Here3 Method 106

location_object.Inverse Method 108

location_object.KineSol Method 110

location_object.Mul Method 112

location_object.Normalize Method 114

location_object.Pitch Property 115

location_object.Pos Property 117

location_object.PosWrtRef Property 119

location_object.RefFrame Property 121

location_object.Roll Property 122

location_object.Type Property 124

location_object.X Property 125

location_object.XYZ Method 127

location_object.XYZInc Method 129

Location.XYZValue Method 130

location_object.Y Property 132

location_object.Yaw Property 134

location_object.Z Property 136

location_object.ZClearance Property 138

location_object.ZWorld Property 140

Table Of Contents

vii

Math Class ... 142

Math Class Summary 142

Math.Abs Method 144

Math.Acos Method 145

Math.Asin Method 146

Math.Atan Method 147

Math.Atan2 Method 148

Math.Ceiling Method 149

Math.Cos Method 150

Math.Cosh Method 151

Math.E Method 152

Math.Exp Method 153

Math.Floor Method 154

Math.Log Method 155

Math.Log10 Method 156

Math.Max Method 157

Math.Min Method 158

Math.PI Method 159

Math.Pow Method 160

Math.Sign Method 161

Math.Sin Method 162

Math.Sinh Method 163

Math.Sqrt Method 164

Math.Tan Method 165

Math.Tanh Method 166

Modbus Class.. 167

Modbus Class Summary 167

modbus_object.Close Method 168

modbus_object.ReadCoils Method 169

modbus_object.ReadDeviceID Method 170

modbus_object.ReadDiscreteInputs Method 172

modbus_object.ReadHoldingRegisters Method 173

modbus_object.ReadInputRegisters Method 175

modbus_object.Timeout Property 177

modbus_object.WriteMultipleCoils Method 178

modbus_object.WriteMultipleRegisters Method 179

GPL Dictionary Pages

viii

modbus_object.WriteSingleCoil Method 180

modbus_object.WriteSingleRegister Method 181

Move Class .. 182

Move Class Summary 182

Move.Approach Method 184

Move.Arc Method 186

Move.Circle Method 189

Move.Delay Method 192

Move.Extra Method 193

Move.ForceOverlap Method 195

Move.Loc Method 198

Move.OneAxis Method 200

Move.Rel Method 202

Move.SetJogCommand Method 204

Move.SetSpeeds Method 206

Move.SetTorques Method 208

Move.StartJogMode Method 210

Move.StartTorqueCntrl Method 212

Move.StartVelocityCntrl Method 214

Move.StopSpecialModes Method 217

Move.Trigger Method 218

Move.WaitForEOM Method 220

Networking Classes .. 221

Networking Classes Summary 221

New IPEndPoint Constructor 223

ipendpoint_object.IPAddress Property 224

ipendpoint_object.Port Property 225

socket_object.Available Property 226

socket_object.Blocking Property 227

socket_object.Close Method 228

socket_object.Connect Method 229

socket_object.Receive Method 230

socket_object.ReceiveFrom Method 231

socket_object.ReceiveTimeout Property 233

socket_object.Send Method 234

Table Of Contents

ix

socket_object.SendTimeout Property 235

socket_object.SendTo Method 236

New TcpClient Constructor 238

tcpclient_object.Client Method 239

tcpclient_object.Close Method 240

New TcpListener Constructor 241

tcplistener_object.AcceptSocket Method 242

tcplistener_object.Close Method 243

tcplistener_object.Pending Property 244

tcplistener_object.Start Method 245

tcplistener_object.Stop Method 246

New UdpClient Constructor 247

udpclient_object.Client Method 248

udpclient_object.Close Method 249

Profile Class .. 250

Profile Class Summary 250

profile_object.Accel Property 251

profile_object.AccelRamp Property 253

profile_object.Clone Method 255

profile_object.Decel Property 256

profile_object.DecelRamp Property 258

profile_object.InRange Property 260

profile_object.Speed Property 262

profile_object.Speed2 Property 264

profile_object.Straight Property 266

Reference Frame Class .. 268

RefFrame Class Summary 268

refframe_object.Loc Property 270

refframe_object.PalletIndex Property 272

refframe_object.PalletMaxIndex Property 274

refframe_object.PalletNextPos Method 276

refframe_object.PalletOrder Property 277

refframe_object.PalletPitch Property 279

refframe_object.PalletRowColLay Method 280

refframe_object.Pos Method 282

GPL Dictionary Pages

x

refframe_object.PosWrtRef Method 283

refframe_object.Type Property 284

Robot Class ... 286

Robot Class Summary 286

Robot.Attached Property 288

Robot.Base Property 289

Robot.Custom Property 291

Robot.DefLinComp Method 293

Robot.Dest Property 295

Robot.DestAngles Property 297

Robot.Home Method 299

Robot.HomeAll Method 300

Robot.LastProfile Property 301

Robot.RapidDecel Property 302

Robot.RestartBase Property 303

Robot.RestartTool Property 304

Robot.Selected Property 305

Robot.Source Property 306

Robot.SourceAngles Property 308

Robot.Tool Property 310

Robot.TrajState Property 312

Robot.Where Property 314

Robot.WhereAngles Property 316

Signal Class... 318

Signal Class Summary 318

Signal.AIO Property 319

Signal.DIO Property 321

Statements... 324

Statements Summary 324

Call Statement 325

Class Statement 327

Const Statement 328

Dim Statement 329

Do...Loop Statements 331

Table Of Contents

xi

Else, ElseIF Statements 333

End Statements 334

Exit Statements 335

For...Next Statements 336

Function Statement 339

Get Statement 342

GoTo Statement 343

If..Then...Else...End If Statements 345

Loop Statements 347

Module Statement 348

Next Statements 349

Property Statement 350

ReDim Statement 353

Return Statement 354

Set Statement 355

Sub Statement 357

While...End While Statements 359

Strings .. 361

String Summary 361

String.Compare Method 363

string.IndexOf Method 365

string.Length Property 367

string.Split Method 368

string.Substring Method 369

string.ToLower Method 370

string.ToUpper Method 371

string.Trim Method 372

string.TrimEnd Method 373

string.TrimStart Method 374

Asc Function 375

Chr Function 376

Format Function 377

Instr Function 380

LCase Function 382

Len Function 383

Mid Function 384

GPL Dictionary Pages

xii

UCase Function 385

Thread Class.. 386

Thread Class Summary 386

New Thread Constructor 387

thread_object.Abort Method 389

Thread.CurrentThread Shared Method 390

thread_object.Join Method 391

thread_object.Resume Method 392

thread_object.SendEvent Method 393

Thread.Sleep Shared Method 394

thread_object.Start Method 395

thread_object.Suspend Method 396

thread_object.ThreadState Property 397

Thread.WaitEvent Shared Method 398

Vision Classes... 401

Vision Classes Summary 401

Vision.Disconnect Method 403

vision_object.ErrorCode Property 404

vision_object.Process Method 405

vision_object.Result Method 407

vision_object.ResultCount Method 409

vision_object.Status Property 411

Vision.ToolProperty Shared Property 412

visresult_object.ErrorCode Property 413

visresult_object.Info Property 414

visresult_object.InfoCount Property 415

visresult_object.InspectActual Property 416

visresult_object.InspectPassed Property 417

visresult_object.Loc Property 418

visresult_object.Type Property 420

1

GPL Dictionary Pages Summary
The Guidance Programming Language Dictionary Pages provide detailed information on each instruction,
keyword, function, and class property and method that is available in GPL. For convenience, these
descriptions are group either by their class or by their major function. Within each group they are sorted
alphabetically.

In general, instruction names, keywords, function names, group names, and property and method names
are indicated in bold. User specified variable names are indicated in italics. Sample GPL program
snippets are presented in the Courier font.

The following table summarizes each of the major groups of descriptions.

Group Description

Array Class Provides the properties of any type of variable array.

Console Class Provides methods for performing output to the serial
console or to the GDE console window.

Controller Class
Provides access to general facilities provided by the
motion control hardware such as power control, timers,
etc.

Exception Handling Includes statements for fielding execution exceptions and
the Exception Class for storing exception information.

File and Serial I/O Classes
Provides File, StreamReader and StreamWriter classes
that implement file and serial line input and output
communications.

Functions Includes standard functions, such as conversion routines,
that do not fall into a specific class.

Location Class Defines positions and orientations of the robot and
objects.

Math Class Provides the standard arithmetic and trigonometric
functions.

Modbus Class
Permits programs to communicate with other intelligent
devices using the MODBUS/TCP Ethernet communication
protocol.

Move Class Provides the basic methods for executing a motion
between Locations using Profiles.

Networking Classes

Classes for Ethernet network communications. Includes
IPEndPoint Class for specifying IP and port addresses;
Socket Class that provides basis for networking I/O
operations; TcpListener Class for TCP server
applications; TcpClient Class for TCP client applications;
and UdpClient Class for UDP server and client
applications.

Profile Class Defines sets of parameters that specify the trajectory to be
followed when moving between Locations.

RefFrame Class
Defines robot and part reference frames. Cartesian
Locations and RefFrames can be defined with respect to
a RefFrame.

Robot Class Provides access to the attributes and properties of each
robot such as their current position and homing methods.

Signal Class Reads and writes digital, analog and other simple means

GPL Dictionary Pages

2

of input and output.

Statements Includes control structures, user procedures and functions,
and other common language elements.

Strings
Provides String manipulation methods in an Object
oriented fashion.

Thread Class Provides the means for starting, stopping, and monitoring
the execution of independent threads.

Vision Classes Provides the means for interfacing to PreciseVision and
easily generating vision-guided motion applications.

3

Array Class
Array Class Summary

The following pages provide detailed information on the properties and methods of the
Array Class.

Array variables of all types (e.g. Strings, Locations, Integers) are members of the built-
in Array Class. You can use the properties of this class to determine the properties of an
array.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

array.GetUpperBound Get Property

Returns the upper bound for a particular
dimension of an array. The lower bound is
always 0, so the total number of elements in
this dimension is one greater than the upper
bound.

array.Length Get Property
Returns the total number of elements in the
entire array, in all dimensions.

array.Rank Get Property
Returns the array rank, which is the number of
dimensions in an array.

GPL Dictionary Pages

4

array.GetUpperBound Property

Returns the maximum allowed array index for a particular dimension of an array.

...array.GetUpperBound(dimension)

Prerequisites

None

Parameters

dimension

A required numeric expression that specifies the index, from 0 to rank-1,
of the dimension whose upper bound should be returned.

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. This upper
bound is the same value specified in a Dim or ReDim statement. The number of
elements in an array dimension is 1 plus the upper bound value.

Examples

Dim array(3,4) As Integer
Dim d1, d2 As Integer
d1 = array.GetUpperBound(0) ' Returns the value 3
d2 = array.GetUpperBound(1) ' Returns the value 4

See Also

Array Class | array.Length | Dim Statement | ReDim Statement

Array Class

5

array.Length Property

Returns the total number of elements in an entire array.

...array.Length

Prerequisites

None

Parameters

None

Remarks

In GPL, all array dimension indices start at 0 and end at the upper bound. The Length
may be computed by multiplying (1+upper bound) of all array dimensions.

Do not be confused when using the Length property with String arrays. For example, if
you declare: Dim sarray(3) As String.

sarray.Length is the number of elements in the array, in this case 4
(from 0 to 3).
sarray(0).Length is the length of the string contained in sarray(0), initially
0.

Examples

Dim array(3,4) As Integer
Dim length As Integer
length = array.Length ' Returns the value 20 = (1+3)*(1+4)

See Also

Array Class | array.GetUpperBound| Dim Statement | ReDim Statement

GPL Dictionary Pages

6

array.Rank Property

Returns the total number of dimensions (the rank) in the array.

...array.Rank

Prerequisites

None

Parameters

None

Remarks

The Rank of an array is the number of dimensions in that array.

Examples

Dim array(3,4) As Integer
Dim array2(5) As Integer
Dim r1, r2 As Integer
r1 = array.Rank ' Returns 2
r2 = array2.Rank ' Returns 1

See Also

Array Class | Dim Statement | ReDim Statement

7

Console Class
Console Class Summary

The following pages provide detailed information on the methods of the global Console
Class. These methods support simple output to the GPL console.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

The table below briefly summaries the properties and methods for this class, which are
described in greater detail in the sections that follow.

Member Type Description

Console.Write Shared
Method

Writes a number or a string to the console.

Console.WriteLine Shared
Method

Writes a number or a string to the console,
followed by a line feed (LF) character.

GPL Dictionary Pages

8

Console.Write Method

Writes a numeric or string value to the GPL console with no line terminator.

Console.Write (number)
-or-
Console.Write (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console with no line
terminator. Subsequent output continues on the same line. For output that combines
both string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.Write("Test ") ' Produces the output: "Test 1"
Console.Write(1)

See Also

Console Class | Console.WriteLine | CStr Function | StreamWriter Class

Console Class

9

Console.WriteLine Method

Writes a numeric or string value to the GPL console followed by a line terminator.

Console.WriteLine (number)
-or-
Console.WriteLine (string)

Prerequisites

None

Parameters

number

A required numeric expression whose value is displayed.

string

A required string expression whose value is displayed.

Remarks

This method writes a single numeric or string value to the GPL console followed by a line
terminator. Subsequent output appears on the next line. For output that combines both
string and numeric values, use the CStr function.

The actual destination of console output depends on the presence of the -event switch on
the Start console command. If -event is not present, console output is sent to the first
serial port named "/dev/com1". If -event is present, console output is sent to GDE where
it is displayed in the GPL Output window.

Examples

Console.WriteLine("Test ") ' Produces the output: Test
Console.WriteLine(1) ' 1

Dim ii As Integer
For ii = 1 To 10
 Console.WriteLine("The square of " & CStr(ii) _
 & " is " & CStr(ii*ii))
Next ii

See Also

Console Class | Console.Write | CStr Function | StreamWriter Class

10

Controller Class
Controller Class Summary

The following pages provide detailed information on the properties and methods of the
global Controller Class. This class provides access to the general facilities provided by
the Guidance Controller, e.g. high power control, E-Stop logic, configuration database
values, etc. As such, this class and all of its members are uniquely defined for Precise
controller products and do not conform to any other standards. In the case of certain
methods, such as the SleepTick, very similar functionality is provided by other means
within the Basic language. However, the members of this class were selected based
upon ease-of-use considerations or because they provide some slightly different, but
important, functionality.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Controller Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Controller.ErrorLog Property
Returns an entry from the system Error Log
as a String value or clears the Error Log.

Controller.Load Method
Loads a GPL project into memory and
compiles it in preparation for execution.

Controller.PDb Property
Sets and gets any accessible value in the
configuration parameter database.

Controller.PDbNum Property
Optimized means to set and get a numeric
value in the configuration parameter
database.

Controller.PowerEnabled Property
Sends a request to either turn on or off high
(motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerState Property
Gets the current state of the high power
sequence.

Controller.RecordButton Property
Sets and gets the latched Boolean value
that indicates if the hardware MCP
RECORD button has been pressed.

Controller.ShowDialog Method
Displays a pop-up dialog box on the web
Operator Control Panel.

Controller.ShowDialogMCP Method
Displays a pop-up dialog box on the LCD
display of the Precise Hardware Manual
Control Pendant.

Controller.SleepTick Method
Delays further execution of a thread for a
specified number of Trajectory Generator

Controller Class

11

periods.

Controller.SoftEStop Property
Sets and gets the Boolean flag that
triggers a Soft E-Stop.

Controller.SystemMessage Method
Enters a message into the GPL system
message log that is displayed on the web
Operator Control Panel.

Controller.Tick Property
Gets the execution repetition period for the
Trajectory Generator.

Controller.Timer Property
Gets the value of the controller’s usec clock
in units of seconds.

Controller.Unload Method Unloads an idle GPL project from memory.

GPL Dictionary Pages

12

Controller.ErrorLog Property

Returns an entry from the system Error Log as a String value or clears the Error Log.

Controller.ErrorLog = <value>
-or-
... Controller.ErrorLog(entry)

Prerequisites

None

Parameters

entry

A required numeric expression that specifies the Integer number of the
Error Log entry to be returned. This value can range from 1 to n, where
1 indicates that the most recent entry should be returned.

Remarks

Whenever a runtime error occurs in the system, the error is time stamped and entered
into the system Error Log. These errors can be generated by an executing thread or from
the motion control system. In addition, GPL applications can enter items into the log
using the Controller.SystemMessage method.

The entries in the Error Log are displayed on the web based Operator Control Panel and
can be retrieved from the console interface.

This method permits GPL programs to retrieve entries from the Error Log one at a time.
Each returned value contains the time stamp, marker indicating the thread that generated
the error, the numeric error code and the text error message. A example of a typical
returned value is as follows:

04-09-2007 12:27:14.223, Trj, -1611, "*Auto/Manual switch set to Manual*"

If you request an entry that does not exist, an empty string value is returned. Also, if a
new entry is added to the log or the log is cleared as you are scanning through the log,
you may get an inconsistent set of error entries.

If this property is assigned a non-zero value as indicated above, rather than retrieving an
entry, all entries are deleted from the Error Log.

Examples

Dim err As String
Dim ii As Integer

Controller Class

13

For ii = 1 To 100
 err = Controller.ErrorLog(ii) ' Retrieve all entries from log
 If (err <> "") Then
 Console.WriteLine(err) ' Display all errors
 Else
 Exit For ' No more entries in the log
 End If
Next
Controller.ErrorLog = 1 ' Clear all entries in the log

See Also

Controller Class | Controller.SystemMessage

GPL Dictionary Pages

14

Controller.Load Method

Loads the files associated with a GPL project into memory and compiles them so that the
project procedures are ready to be executed.

Controller.Load(project_folder_path)

Prerequisites

The project folder must contain a valid project file named Project.gpr. This project file
describes all the remaining files within the project. The project must not be currently
loaded.

Parameters

project_folder_path

A required string expression that specifies the name of the folder that
contains the project to be loaded. Normally the folder is located on the
"/flash" device.

Remarks

This method loads a project by first creating a folder in the controller's memory section
that is allocated for GPL projects. Then, all of the files associated with the project are
copied into the memory folder. Finally, the project is compiled so that the loaded
procedures are ready to be executed.

No compilation errors are displayed on the console. Examine the file
/GPL/project_name/Compile.log for a listing of compiler messages.

This method will throw an exception if the project cannot be loaded, if it is already loaded,
or if compilation errors occur.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()

See Also

Controller Class | Controller.Unload | Thread.Start

Controller Class

15

Controller.PDb Property

Sets and gets any accessible value in the configuration parameter database.

Controller.PDb(dataid, unit, unit2, array_index) = <new_string_value>
-or-
... Controller.PDb(dataid, unit, unit2, array_index)

Prerequisites

None

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
0, which reads all possible array values.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

GPL Dictionary Pages

16

database. Controller.PDb can be used to read or write all accessible values in the
parameter database.

Controller.PDb reads parameters and returns the results in a String or writes
parameters by accepting a String expression. If the parameter contains numeric values,
the values are represented as text numbers separated by commas (in the case of
numeric arrays). If the parameter contains a single string value, the value is read into or
read from a GPL String without delimiting quotation marks. If the parameter contains an
array of strings, each string is delimited by double quotes and sequential values are
separated by commas.

As a convenient for developing custom web pages, the parameter database contains a
series of "GPL program strings" (DataID's 1800-1819) and "GPL program variable's"
(DataID's 1850-1869). Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim stg As String

Controller.PDb(541) = """Label1"",""Label2""" ' Sets first two DOUT labels

stg = Controller.PDb(100) ' stg set to "Precise Automation
Inc"

See Also

Controller Class | Controller.PDbNum

Controller Class

17

Controller.PDbNum Property

Optimized means for setting and getting a numeric value in the configuration parameter
database.

Controller.PDbNum(dataid, unit, unit2, array_index) = <new_value>
-or-
... Controller.PDbNum(dataid, unit, unit2, array_index)

Prerequisites

Can only access numeric parameter database values.

Parameters

dataid

A required numeric expression that specifies an Integer identification
code for the parameter to be accessed. For example, the parameter for
setting the system “test speed” is 601.

unit

An optional numeric expression that specifies an Integer unit number for
the parameter to be accessed. For many parameters, e.g. the Controller,
only a single unit exists. For parameters that refer to devices with
multiple possible units, e.g. multiple robots driven by a single controller,
this parameter ranges from 1 to n. If not specified, this value defaults to
1.

unit2

An optional numeric expression that specifies an Integer sub unit
number for the parameter to be accessed. The use of the sub unit
number is not very common and this parameter is normally just defaulted
to 1.

array_index

An optional numeric expression that specifies an Integer array index for
parameters that have multiple values. For example, for a robot with
multiple axes, the “joint maximum soft stop limits” (dataid 16077) is an
array with one value for each joint. If not specified, this value defaults to
1, the first array element.

Remarks

As described in the Controller Software Introduction, all of the key variables for
configuring and monitoring the operation of the system are stored in a unified parameter

GPL Dictionary Pages

18

database. Controller.PDbNum is an variation of Controller.PDb that has been
optimized to efficiently read and write numeric values stored in this database.

In addition to generally efficient operation, Controller.PDbNum operates especially
quickly when reading and writing the "GPL program variable's" (DataID's 1850-1869).
These database elements have been created to allow GPL projects to interface to
custom web pages. Custom web pages can read and write these values via ASP
operations. Once the controller is restarted, the operating system does not alter any of
these variable values.

WARNING: While database values can be freely read, care should
be taken when writing to general database parameters.
Unintentionally altering some values may cause the system to not
operate properly.

Examples

Dim limit As Single
limit = Controller.PDbNum(16077,,,2) ' Sets limit equal to the maximum
 ' allowable range of travel for jt 2

See Also

Controller Class | Controller.PDb

Controller Class

19

Controller.PowerEnabled Property

Sends a request to either turn on or off high (motor) power to the amplifier. Returns
whether high power is on or off.

Controller.PowerEnabled = <boolean_value>
-or-
Controller.PowerEnabled(timeout) = <boolean_value>
-or-
... Controller.PowerEnabled

Prerequisites

Enabling power via this software command is not permitted on Category 3 safe systems.
For Category 3 systems, a momentary contact, hardware “Enable Power” button must be
manually pressed.

Parameters

timeout

An optional numeric value that specifies the maximum time, in seconds,
to wait for power to come on. If less than or equal to zero or omitted, this
property waits forever.

Remarks

Setting the PowerEnabled property True sends a request to the control system to
enable high power to the amplifiers. For non-Category 3 safe systems, high power will be
enabled only if a number of safety conditions are satisfied (e.g. no Hard E-Stop signal is
asserted, no fatal system error exists, etc.). This property waits until the power actually
comes on, with a time limit determined by the timeout parameter. If this parameter is
positive and the power does not come on within the time limit, this property throws an
exception that indicates why power did not come on.

Setting the PowerEnabled property False turns off high power to the amplifiers, but the
property does not wait until power is actually off. Unlike the Hard E-Stop signal that
delays for a fixed period of time before disabling power, turning off PowerEnabled forces
all moving robots to completely decelerate to a stop and allows time for the brakes to be
set before power to the amplifiers is disabled. Therefore, setting PowerEnabled False
allows for a more orderly stopping of motion than does a Hard E-Stop but this operation
is consequently somewhat slower.

The PowerEnabled property is automatically set to False by the system if High Power is
disabled by any means and is automatically set to True if High Power is enabled.

Examples

GPL Dictionary Pages

20

Dim bState As Boolean
Controller.PowerEnabled = True ' Requests high power be enabled
Controller.PowerEnabled(5) = True ' Requests high power be enabled
 ' and waits for up to 5 seconds
bState = Controller.PowerEnabled ' bState will be set True if power is
 ' enabled, else will be set False.

See Also

Controller Class | Controller.PowerState | Controller.SoftEstop | Robot.RapidDecel

Controller Class

21

Controller.PowerState Property

Reads and returns an Integer value that indicates the current state of the amplifier high
power sequencing.

... Controller.PowerState

Prerequisites

None

Parameters

None

Remarks

In order to enable high power to the amplifiers, the system must transition in an orderly
fashion through several states to ensure that safety and hardware requirements are
satisfied. The PowerState property indicates the current state of the power sequencing.

The possible values returned by this property and their interpretation are presented in the
following table:

PowerState Description

0 System initially starting up
1 Power off, fatal error has occurred
2 Power off, power sequence restarting
3 Power being turned off, no fault condition has occurred
4 Power being turned off, a fault condition has occurred
5 Power is off, a fault has occurred that must be cleared

6
Power is off, waiting for hardware enable power switch to be turned
off

7 Power is off, waiting for enable power signal to be asserted
8 Power is coming up, enabling amplifiers
9 Power is on, performing motor commutation
10 Power is coming up, enabling servos and releasing brakes
11 Power is on, waiting to execute thread or Auto Execution task
12 Power is on, executing Auto Execution task

Examples

Dim state As Integer
state = Controller.PowerState ' Sets state to one of the values listed above

See Also

GPL Dictionary Pages

22

Controller Class | Controller.PowerEnabled | Controller.SoftEstop | Robot.RapidDecel

Controller Class

23

Controller.RecordButton Property

Reads and writes the latched Boolean value that indicates if the hardware MCP
RECORD button has been pressed.

Controller.RecordButton = <boolean_value>
-or-
... Controller.RecordButton

Prerequisites

None

Parameters

None

Remarks

Whenever the RECORD key on the Precise Hardware Manual Control Pendant (MCP) is
pressed, the value of this property is automatically set to True. This property value
remains True until it is manually set to False.

The RECORD key on the MCP and this property provide a convenient means for GPL
projects to receive a command from the operator to record key data, typically taught robot
locations.

The value of this property can also be accessed via the Parameter Database as the
"MCP Record button pressed" (DataID 632) value.

Examples

Dim taught_loc As New Location
If (Controller.RecordButton) Then
 taught_loc.Here ' Save current robot location
 Controller.RecordButton = False
End if

See Also

Controller Class

GPL Dictionary Pages

24

Controller.ShowDialog Method

Displays a pop-up dialog box on the web interface Operator Control Panel.

Controller.ShowDialog(button_labels, message, button_index)
-or-
Controller.ShowDialog(button_labels, message, button_index, text_field)
-or-
Controller.ShowDialog(mode, button_labels, message, button_index, field_labels,
field_values)

Prerequisites

None

Parameters

mode

(3rd form of this method) A required numeric expression that specifies
the display mode. Currently only the value 1 is supported, which
indicates a simple list.

button_labels

A required String expression containing the button labels to be
displayed. Up to 4 buttons can be specified, separated by commas. If the
button labels contain blanks or commas, they should be enclosed in
quotes. The string must not contain the vertical bar "|" character.

message

A required String expression containing the message to be displayed in
the dialog box. The string must not contain the vertical bar "|" character.

button_index

A required ByRef Integer variable that receives the index of the button
pressed in the dialog box. Set to 1 for the first button, 2 for the second,
etc.

text_field

(2nd form of this method) An optional ByRef String variable that
receives the value of any text entered into the dialog box text field. Its
initial value is shown as the default value of the text field. The string must
not contain the vertical bar "|" character.

field_labels

Controller Class

25

(3rd form of this method) A required 1-dimensional String array that
contains labels to be displayed preceding each data field in the dialog
box. Each String array element contains a label for a separate field. Up
to to 12 fields are permitted. The number of elements in this array
determines the number of fields. The Strings must not contain the
vertical bar "|" character.

field_values

(3rd form of this method) A required 1-dimensional String array that
receives the value of any text entered into the dialog box text fields. The
initial values of this array are displayed as the default values of the text
fields. The Strings must not contain the vertical bar "|" character.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator without creating a custom web page. When ShowDialog is called, its operation
is as follows:

1.
2. Waits if another thread is already displaying a dialog box.
3. Posts the dialog box for display and waits for the user to open the

Operator Control Panel on the web interface and click on a button.
4. Un-displays the dialog box.
5. Returns the button index and optional text field information to the

user.

Since this method generates a dialog box within a browser, any special text formatting
must be defined as standard HTML specifications. In particular, to add a carriage return
and line feed, include "
" within the text. To have a section of text left justified,
precede it with "<p align=left>" and terminate it with "</p>".

This method is overloaded to support several dialog box styles.

In the simplest (1st) form, the pop-up displays only the message text and labeled buttons.
When the user clicks on one of the buttons, the index of the button clicked is returned in
the button_index variable.

In the text_field (2nd) form, the pop-up also displays a single text field that can be
overwritten by the user. When the user clicks on one of the buttons, the current value of
the text field is returned in the text_field variable, and the index of the button clicked is
returned in the button_index variable.

In the more complex field_values and field_labels (3rd) form, the dialog box allows
multiple fields to be entered and returned. The mode parameter selects the display mode
and must currently be set to 1. When the user clicks on one of the buttons, the values of
the fields are returned in the field_values array, and the index of the button clicked is
returned in the button_index variable.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

GPL Dictionary Pages

26

Dim bi As Integer
Controller.ShowDialog("Okay", "Ready to begin process", bi)

Public Sub Test1
 Dim bi As Integer
 Dim reply As String
 reply = "Part_1" ' Default is Part_1
 Controller.ShowDialog("Okay, Cancel", _
 "Enter part name", bi, reply)
 If bi = 1 Then
 … ' Okay selected
 Else
 … ' Cancel selected
 End If
 Console.WriteLine("You entered: " & reply)
End Sub

Public Sub Test2
 Dim Buttons As String = "Okay, Cancel"
 Dim Text As String = "Enter the field values"
 Dim Label(2) As String
 Dim Field(2) As String
 Dim Index As Integer

 Label(0) = "X value"
 Label(1) = "Y value"
 Label(2) = "Z value"

 Field(0) = "100.0"
 Field(1) = "100.0"
 Field(2) = "0.0"

 Controller.ShowDialog(1, Buttons, Text, Index, Label, Field)

 Console.WriteLine("Button: " & CStr(Index))
 Console.WriteLine("Field 0: " & Field(0))
 Console.WriteLine("Field 1: " & Field(1))
 Console.WriteLine("Field 2: " & Field(2))
End Sub

See Also

Controller Class | Controller.ShowDialogMCP | Controller.SystemMessage

Controller Class

27

Controller.ShowDialogMCP Method

Displays a pop-up dialog box on the LCD display of the Precise Hardware Manual
Control Pendant.

Controller.ShowDialogMCP(button_mask, message, button_return)
-or-
Controller.ShowDialogMCP(button_mask, message, button_return, text_field)

Prerequisites

Precise Hardware Manual Control Pendant must be connected to the controller.

Parameters

button_mask

A required Integer expression whose bits specify the MCP key presses
that will terminate the dialog box. A value of -1 indicates that the
maximum number of keys are permitted to terminate the dialog process.

message

A required String expression containing the message to be displayed on
the LCD display. If a text_field is specified, the message must include a
substring ('##...##') that defines where the characters of the text_field are
output in the MCP display. The number of pound signs (#) defines the
width of the input field.

button_return

A required ByRef Integer variable that receives the bit flag that indicates
the button that was pressed to terminate the dialog operation.

text_field

An optional ByRef String variable that receives the value of any text
entered into the dialog box text field. The initial value of this variable is
displayed as the default value of the text field. Given the key pad layout
of the Precise MCP, the text_field can only contain a numeric value that
consists of 0-9, ., + or - characters.

Remarks

This method provides a simple way for a GPL procedure to communicate with the
operator via the Precise Hardware Manual Control Pendant. When ShowDialogMCP is
called, its operation is as follows:

1.

GPL Dictionary Pages

28

2. Waits if another thread is already displaying a MCP dialog box.
3. Replaces the standard MCP display with the contents of the message

and the optional embedded text_field, and lights the LED on the APP
key.

4. If the optional text_field is defined, accepts presses of the 0-9, ., +, -
or DEL keys and presents the results in the LCD display.

5. If the display and keypad are switched back to their standard mode
due to a manual control operation or error message, blinks the APP
key LED until the APP key is pressed to re-display the dialog.

6. When one of the specified termination keys is pressed, un-displays the
dialog box.

7. Returns the termination key button bit flag and the optional text field
value.

The MCP keypad buttons that can be specified to terminate the dialog mode are listed in
the following table together with their associated button_mask and button_return values.

Key Label button_mask&
button_return

Enter &H000001
Record &H000002

Yes &H000004
No &H000008
Quit &H000010
Prev &H000020
Next &H000040
F1 &H010000
F2 &H020000
F3 &H040000
F4 &H080000

By default, when a dialog is first displayed on the MCP, a beep is generated to alert the
operator. The beeping operation can be suppressed by resetting the "Beep MCP when
APP mode started" (DataID 636) system parameter.

If the thread displaying the dialog box is paused or stopped, the dialog box is un-
displayed immediately.

Examples

Dim but As Integer
Dim ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Ready to begin" & CRLF & CRLF _
 & " <Yes> or <No>"
Controller.ShowDialogMCP(&H4+&H8, ss, but)

Dim but As Integer
Dim reply, ss, CRLF As String
CRLF = Chr(GPL_CR) & Chr(GPL_LF)
ss = " Enter part number:" & CRLF _
 & " '#########'" & CRLF & CRLF _
 & " <Enter> or <Quit>"
reply = "12" ' Default reply value
Controller.ShowDialogMCP(&H1+&H10, ss, but, reply)
If but = &H10 Then

Controller Class

29

 Console.Writeline("Request cancelled")
Else
 Console.WriteLine("You entered: " & reply)
End If

See Also

Controller Class | Controller.ShowDialog | Controller.SystemMessage

GPL Dictionary Pages

30

Controller.SleepTick Method

Delays further execution of a thread for a specified number of Trajectory Generator
periods.

Controller.SleepTick(ticks)
-or-
Controller.SleepTick

Prerequisites

None

Parameters

ticks

An optional numeric expression that specifies an Integer number of
Trajectory Generator periods that execution is to be delayed. If this
parameter is not specified, the value is defaulted to 1.

Remarks

Often times, a program must poll input data values periodically. While it is possible to use
a “busy loop” that counts for a fixed number of times, this technique unnecessary
consumes CPU time that could be more productively spent by system drivers or other
GPL threads. The SleepTick method allows a thread to relinquish control of the CPU for
a specified period of time and then resume execution at the next sequential statement.

Since many operations are synchronized to the operation of the Trajectory Generator, the
delay time for this method is specified in units of Trajectory Generator execution periods.

Please note that other programming languages like Basic typically have other means for
putting a thread to sleep for a specified period of time.

Examples

 Controller.SleepTick ' Delays thread execution until
 ' after the start of the next
 ' trajectory cycle
 Controller.SleepTick (2/Controller.Tick) ' Delays thread execution for
 ' approximately 2 seconds

See Also

Controller Class | Controller.Tick | Controller.Timer

Controller Class

31

Controller.SoftEStop Property

Reads and writes the Boolean value that triggers a Soft E-Stop condition when True.

Controller.SoftEStop = <boolean_value>
-or-
... Controller.SoftEStop

Prerequisites

None

Parameters

None

Remarks

A Soft E-Stop initiates a rapid deceleration of all robots currently in motion and generates
an error condition for all GPL programs that are attached to a robot. This property can be
used to quickly halt all robot motions in a controlled fashion when an error is detected.

This function is similar to a Hard E-Stop except that Soft E-Stop leaves High Power
enabled to the amplifiers and is therefore used for less severe error conditions. Leaving
power enabled is beneficial in that it prevents the robot axes from sagging and does not
require high power to be manually re-enabled before program execution and robot
motions are resumed. This function is also similar to a Rapid Deceleration feature except
that a Rapid Deceleration only affects a single robot and no program error is generated.

If set, the SoftEStop property is automatically cleared by the system if High Power is
disabled and re-enabled.

Examples

Dim bState As Boolean
Controller.SoftEStop = True ' Triggers a Soft E-Stop condition
bState = Controller.SoftEStop ' bState will be set True since a
 ' Soft E-Stop has been asserted

See Also

Controller Class | Controller.PowerEnabled | Controller.PowerState| Robot.RapidDecel

GPL Dictionary Pages

32

Controller.SystemMessage Method

Enters a message into the GPL system message log that is displayed on the web
Operator Control Panel.

Controller.SystemMessage(message)

Prerequisites

None

Parameters

message

A required String expression containing the message to be entered into
the message log.

Remarks

This method enters a line into the system message log with other system messages and
error message entries. The system message log is kept sorted in time order. This log is
displayed by the Operator Control Panel in the System Messages box.

Examples

Controller.SystemMessage("Cycle time: " & CStr(now-saved))

Controller.SystemMessage("Operation complete")

See Also

Controller Class | Controller.ErrorLog | Controller.ShowDialog | Controller.ShowDialogMCP

Controller Class

33

Controller.Tick Property

Double value that specifies the execution period for the Trajectory Generator in seconds.

...Controller.Tick

Prerequisites

None

Parameters

None

Remarks

The Trajectory Generator is the task that evaluates robot motion plans and generates the
series of individual commands to move each joint of each robot along its designated path.
To accomplish this task, the Trajectory Generator executes at a configurable repetition
rate. The Tick property returns the period of the repetition rate in seconds. Typically this
will be set to a value of 0.004 or 0.008 seconds.

Examples

Dim period As Double
period = Controller.Tick ' Sets period equal to the Trajectory
 ' Generator execution period, e.g. 0.004
 ' seconds

See Also

Controller Class | Controller.SleepTick | Controller.Timer

GPL Dictionary Pages

34

Controller.Timer Property

Returns the current value of the controller’s usec clock, in units of seconds, as a Double.

...Controller.Timer

Prerequisites

None

Parameters

None

Remarks

This method reads the current value of the controller’s usec clock and returns the value in
units of seconds. This clock value starts counting from January 1, 1988. Given the
number of significant bits in a Double, the Timer value will not lose accuracy until
approximately the year 2124.

Examples

Dim StartTime, ElapsedTime As Double
StartTime = Controller.Timer ' Reads system clock
Controller.SleepTick(2/Controller.Tick) ' Sleep for about 2 seconds
ElapsedTime = Controller.Timer-StartTime ' Value will be approx 2

See Also

Controller Class | Controller.SleepTick | Controller.Tick

Controller Class

35

Controller.Unload Method

Unloads the files and data associated with a GPL project from memory.

Controller.Unload(project_name)

Prerequisites

No procedures in this project can be currently executing.

Parameters

project_name

A required string expression that contains the name of the project to be
unloaded.

Remarks

This method unloads a project by removing all of its associated data from the controller's
memory and removing all associated files from the GPL project memory area.

This method throws an exception if any procedure in this project is currently executing.
No exceptions are thrown if the project is not currently loaded or does not exist.

Examples

Dim th As Thread
Controller.Load("/flash/projects/Test")
th = New Thread("Main", "Test", "Thread2")
th.Start()
th.Join(0) ' Wait for thread to complete
Controller.Unload("Test")

See Also

Controller Class | Controller.Load | Thread.Join

36

Exception Handling
Exception Handling Summary

The following pages provide detail information on the exception handling instructions and
the properties and methods of the Exception Class. The exception handling statements
provide a structured means for a procedure to detect and respond to program execution
exceptions that would otherwise cause the procedure to halt execution. When an
exception occurs, information on the cause of the exception can be automatically saved
in an Exception Object and execution can be branched to a block of code designed to
service the exception.

Exception Objects have two basic forms: a general Exception and a robot Exception.
Both forms store a numerical code that indicates the type of exception. In addition, the
robot Exception includes the number of the robot and the axes that are associated with
the exception. The general form of the Exception includes a Qualifier value that can
provide addition information on the nature of the exception.

The table below briefly summarizes the exception handling statements that are described
in greater detail in the following pages.

Statement Description

Catch
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions
executed when an exception occurs.

End Try Marks the end of the exception handling structure.

Exit Try
Terminates the execution of a Try or Catch block of
instructions.

Finally
Used within a Try...Catch...Finally...End Try series of
statements to mark the start of the block of instructions that is
always executed at the completion of the Try or Catch blocks.

Throw Generates a program execution exception.

Try...Catch...Finally...
Exception handling structure that captures execution exceptions
within a block of instructions and executes statements to field
the exception if necessary.

The table below briefly summarizes the properties and methods of the Exception Class
that are described in greater detail in the following pages.

Member Type Description

exception_obj.Axis Property
Sets and gets a bit mask indicating the robot
axes associated with a robot Exception.

exception_obj.Clone Method
Method that returns a copy of the
exception_obj.

exception_obj.ErrorCode Property
Sets and gets the number of the error
message.

exception_obj.Message Method
Returns the full text string that is generated
based upon the exception_obj properties.

exception_obj.Qualifier Property
Sets and gets the error message qualifier for
a general Exception.

Exception Handling

37

exception_obj.RobotError Property
Sets and gets the Boolean that indicates if
an Exception is a robot or general type.

exception_obj.RobotNum Property
Sets and gets the number of the robot
associated with a robot Exception.

GPL Dictionary Pages

38

Catch Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions executed when an exception occurs.

Catch exception_object

Prerequisites

Must always follow a Try statement block. Either a Catch or Finally statement or one of
each must appear in a Try structure.

Parameters

exception_object

Required Exception Object. The exception_object must already have a
data section allocated prior to the execution of this instruction, i.e. the
New qualifier should have been previously used in a Dim statement to
instantiate the Object.

Remarks

The Catch statement marks the start of the block of instructions that is executed if an
exception occurs during the execution of the corresponding Try block of instructions. If
the Catch block is triggered, the information on the execution exception is automatically
stored into the exception_object.

If an exception occurs during the execution of the Catch block of statements, thread
execution will be terminated unless the violating instructions are themselves contained
within a Try structure or if a higher-level Try structure exists.

At the completion of the Catch block, the statements in the following Finally block are
executed if they exist, otherwise execution continues at the first step following the
associated End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

Exception Handling

39

End Try Statement

This statement marks the end of the exception handling structure.

End Try

Prerequisites

Must always follow a Catch or Finally statement block.

Remarks

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

GPL Dictionary Pages

40

Exit Try Statement

This statement terminates the execution of either a Try or a Catch block of instructions.

Exit Try

Prerequisites

Can only be specified within a Try or Catch block of instructions. In particular, this
instruction is illegal within a Finally block.

Remarks

If this statement is executed within a Try or a Catch block of instructions, statement
execution immediately branches to the first statement in the Finally block or, if the
Finally block is not defined, the first statement following the subsequent End Try.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
information on the general format of the exception handling structure.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

Exception Handling

41

Finally Statement

Used within a Try...Catch...Finally...End Try series of statements to mark the start of the
block of instructions that is always executed at the completion of the Try or Catch blocks.

Finally

Prerequisites

Must always follow a Try or Catch statement block. Either a Catch or Finally statement
or one of each must appear in a Try structure.

Remarks

The Finally statement marks the start of the block of instructions that is always executed
after the successful execution of a Try series of statements or at the completion of the
Catch series of statements. This allows a program to specify a series of statements that
are guaranteed to be executed before execution continues following the End Try
statement.

Please see the documentation on the Try...Catch...Finally...End Try Statements for
further information on the use of this statement.

See Also

Exception Handling | Try...Catch...Finally...End Try Statements

GPL Dictionary Pages

42

Throw Statement

Generates a program execution exception.

Throw exception_object

Prerequisites

None

Parameters

exception_object

Required Exception Object. The Exception can contain either a
general or a robot formatted error.

Remarks

This statement can be included in any procedure and need not be contained within a
Try...Catch...Finally...End Try structure. Whenever it is executed, a program exception
is immediately signaled. If this statement is not executed within a Try block, execution of
the thread is terminated and the error contained within the exception_object is reported to
the operator.

The Throw statement is often used within a Catch block. If the Exception captured by
the Catch is not to be processed by the Catch block, the Exception can be reissued by
a Throw statement. This allows Exceptions that are not to be serviced by a Catch to be
passed to a higher-level Catch or to halt thread execution.

To allow application programs to generate their own special Exceptions, two error codes
exist that are never automatically generated by the controller:

(-786) *Project generated error*
(-1038) *Project generated robot error*

These error codes can be emitted by the Throw instruction to alert the operator to special
exception conditions not normally detected by GPL.

Examples

 Dim exc1 As New Exception
 Try
retry:
 Move.Loc(loc1, profile1)
 Move.WaitForEOM
 Catch exc1
 If (exc1.ErrorCode = -153) Then ' Soft envelope error?
 profile1.Speed *= .9 ' Yes, reduce speed
 GoTo retry
 End If

Exception Handling

43

 Throw exc1 ' Emit unknown error
 End Try

See Also

Exception Handling

GPL Dictionary Pages

44

Try..Catch..Finally..End Try Statements

Exception handling structure that captures execution exceptions within a block of
instructions and, if necessary, executes statements to field the exception.

Try
 [try_statements]
[Catch exception_object
 [catch_statements]]
[Finally
 [finally_statements]]
End Try

Prerequisites

None

Parameters

try_statements

Optional statement or list of statements whose exceptions, if any, will be
handled by another block of code rather than immediately resulting in the
termination of thread execution.

exception_object

Exception Object, required if the Catch statement is defined. When an
exception occurs during the execution of the try_statements, the
exception description is automatically stored in the exception_object prior
to the execution of the catch_statements. The exception_object must
already have a data section allocated prior to the execution of the Catch,
i.e. the New qualifier should have been previously used in a Dim
statement to instantiate the Object.

catch_statements

Optional statement or list of statements that are executed if an exception
occurs during the execution of the try_statements.

finally_statements

Optional statement or list of statements that are always executed at the
successful completion of the try_statements or the completion of the
catch_statements.

Remarks

Exception Handling

45

If an exception of any type occurs when the try_statements are executed, rather than
halting execution and reporting the error, the system automatically stores the exception
information in the exception_object and branches execution to the start of the
catch_statements. The catch_statements can test the exception_object to determine the
nature of the exception and then perform whatever corrective action is necessary. If the
try_statements complete execution without an error or when the catch_statements
complete execution after an exception, the finally_statements are always executed to
perform any required cleanup. At the completion of the finally_statements, regular
instruction execution continues at the first statement following the End Try.

A Try structure must contain either a single Catch statement or a single Finally
statement or one of each type of statement. If a Catch statement is specified, it must
always include an exception_object.

Try structures can be nested within each other to an arbitrary depth. For example, a Try
structure can be contained within the catch_statements of another, higher-level Try
structure. Also, procedure calls can be contained within any of the statement blocks
including the try_statements.

If an exception occurs within a procedure that is invoked within a Try structure with a
Catch, the execution of the procedure is immediately terminated and execution will
continue at the first instruction in the catch_statements in the calling procedure. This
feature allows a single Try Catch to be placed at a very high-level and capture any
exceptions in any lower level routines. This case is illustrated in Example #1 below.

Alternately, if the called procedure generates an exception within a Try structure with a
Catch, the catch_statements within the called routine will service the exception.
However, if an exception occurs in a called procedure within a Try without a Catch but
with a Finally, the finally_statements in the called routine will be executed first, then
execution of the called procedure will be terminated, after which execution will continue in
the catch_statements of the calling procedure. This case is illustrated in Example #2
below.

There are special limitations on the use of GoTo instructions in connection with Try
structures. A GoTo contained in the catch_statements can branch execution into the
corresponding try_statements. Also, GoTo's can be contained in the try_statements,
catch_statements, and the finally_statements so long as the branch is to an instruction
within the same block of statements. All other branching into and out of the Try
statement blocks and the main code is not permitted, e.g. you cannot branch from
outside of a Try structure into the try_statements or out of the try_statements into the
finally_statements. These special limitations are illustrated in Example #3 below.

Lastly, an Exit Try statement is provided for prematurely terminating a series of
try_statements or catch_statements. When this instruction is executed in either the
try_statements or the catch_statements, execution branches and continues at the first
statement in the finally_statements. Exit Try instructions are not permitted in the
finally_statements.

Examples

Example #1

Public Sub MAIN
 Dim exc1 As New Exception

GPL Dictionary Pages

46

 Try
 test()
 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exception!") ' Is executed
 End Try
End Sub

Public Sub test()
 Dim ii As Integer
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
End Sub

Example #2

Public Sub MAIN
 Dim exc1 As New Exception
 Try
 test()
 Console.WriteLine("Test completed") ' Never gets here
 Catch exc1
 Console.WriteLine("Exception!") ' Is executed
 End Try
End Sub

Public Sub test()
 Dim ii As Integer
 Try
 ii = 1 / 0 ' Generates exception
 Console.WriteLine("Inside Test") ' Never gets here
 Finally
 Console.WriteLine("Finally in Test") ' Is executed
 End Try
 Console.WriteLine("Test done") ' Never gets here
End Sub

Example #3

 Dim exc1 As New Exception
 Dim index As Integer
 Robot.Attached = 1
 Try
retry:
 Move.Loc(loc1, profile1)
 Move.WaitForEOM
 Catch exc1
 Controller.SystemMessage(exc1.Message)
 Controller.ShowDialog("Ok,Cancel","Retry?",index)
 If index = 1 Then
 If Robot.Attached = 0 Then
 Controller.PowerEnabled = True
 Robot.Attached = 1
 End If
 GoTo retry ' LEGAL BRANCH
 End If
 GoTo bad_jump ' ILLEGAL BRANCH!!!
 End Try
bad_jump:

See Also

Exception Handling | Exit Try Statement | Throw Statement

Exception Handling

47

exception_object.Axis Property

Sets and gets a bit mask indicating the robot axes associated with a robot Exception.

exception_object.Axis = <new_bitmask_value>
-or-
...exception_object.Axis

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, the Axis property specifies the robot axes or motors that are
associated with the error condition. This value is a bit mask where the least significant bit
(&H1) represents the first axis or motor. Up to 12 bits can be set and multiple bits can be
set at the same time. For example, when the error code is -1012 (Joint out-of-range), the
Axis property bits indicate the which axes have violated their software ranges of motion.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the Axis bits are initially all set to 0.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Exception Handling | exception_object.RobotError | exception_object.RobotNum

GPL Dictionary Pages

48

exception_object.Clone Method

Method that returns a copy of the exception_object.

...exception_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples

Dim exc1 As New Exception ' Create new exception with data
Dim exc2 As Exception ' Create new exception with no data
exc1.ErrorCode = -1002 ' *Invalid axis* error code
exc1.RobotError = True
exc2 = exc1.Clone ' Makes a copy of exc1 data
exc2.Axis = &HC ' Does not affect exc1 data
Console.WriteLine(exc1.Message) ' *Invalid axis* Robot 1
Console.WriteLine(exc2.Message) ' *Invalid axis* Robot 1: 3 4

See Also

Exception Handling

Exception Handling

49

exception_object.ErrorCode Property

Sets and gets the number of the error message.

exception_object.ErrorCode = <new_value>
-or-
...exception_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

The ErrorCode property of an Exception is the primary value that indicates the type of
exception that is represented by the exception_object. This value can range from 4095
to -4095 and each utilized value has a text string associated with it for display purposes.
In most cases, the ErrorCode is further qualified by additional information such as a
robot number, axis number or other information.

To facilitate the interpretation of the ErrorCodes, positive values indicate success or
warning conditions and negative numbers indicate an error of some type. A value of 0 is
the general success code.

For a full listing of the defined ErrorCode values, please see the "System Error Codes"
section of the Precise Documentation Library.

When a New Exception is created, it defaults to a general Exception with an ErrorCode
value of 0 (success).

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling

GPL Dictionary Pages

50

exception_object.Message Method

Returns the full text string that is generated based upon the exception_obj properties.

...exception_object.Message

Prerequisites

None

Parameters

None

Remarks

Given any exception_object, this method interprets the ErrorCode and any defined
refinement information such as the RobotNum, Axis, or Qualifier properties as
appropriate and returns the equivalent text string that is normally output to indicate this
exception.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1012 ' *Joint out-of-range*
exc1.Axis = &HA ' Specify axes 2 and 4
Console.WriteLine(exc1.Message) ' *Joint out-of-range* Robot 1: 2 4

See Also

Exception Handling

Exception Handling

51

exception_object.Qualifier Property

Sets and gets the error message qualifier for a general Exception.

exception_object.Qualifier = <new_value>
-or-
...exception_object.Qualifier

Prerequisites

Only valid for general Exceptions.

Parameters

None

Remarks

For general Exceptions, the Qualifier property specifies an additional number that can
be used to further refine the meaning of an error condition. This value is stored as a 16-
bit unsigned number and can therefore range from 0 to 65535. For example, when the
error code is -786 (Project generated error), the Qualifier property can be used by the
GPL Project to convey which of several different special error conditions was detected.

When a New Exception is created, it defaults to a general Exception with a Qualifier
property of 0. When an Exception is changed from a robot to a general type, the
Qualifier value is reset to 0.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.ErrorCode = -786 ' *Project generated error*
exc1.Qualifier = 8 ' Specify the qualifier
Console.WriteLine(exc1.Message) ' *Project generated error*: 8

See Also

Exception Handling | exception_object.RobotError

GPL Dictionary Pages

52

exception_object.RobotError Property

Sets and gets the Boolean that indicates if an Exception is a robot or general type.

exception_object.RobotError = <boolean_value>
-or-
...exception_object.RobotError

Prerequisites

None

Parameters

None

Remarks

Setting the RobotError property of an exception_object to True indicates that it is a robot
Exception and therefore has a RobotNum and an Axis property. Otherwise, setting
RobotError to False indicates that the exception_object is a general Exception and has
a Qualifier property.

Both robot and general Exceptions have the same effect in terms of halting thread
execution and disabling robot power. The only difference between the two types of
Exceptions is which additional properties exist to further refine the interpretation of the
error code.

When a New Exception is created, it defaults to a general Exception. To switch
between robot and general Exception types, the RobotError property should be set as
needed.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling

Exception Handling

53

exception_object.RobotNum Property

Sets and gets the number of the robot associated with a robot Exception.

exception_object.RobotNum = <new_value>
-or-
...exception_object.RobotNum

Prerequisites

Only valid for robot Exceptions.

Parameters

None

Remarks

For robot Exceptions, the RobotNum property specifies the number of the robot
associated with the error condition. This value can range from 0 to 16. A value of 0
indicates that it is a conveyor belt and values from 1 to 16 specify regular robot numbers.
For example, when the error code is -1006 (Robot already attached), the RobotNum
property indicates which robot was being accessed when this error was generated.

When a New Exception is created, it defaults to a general Exception not a robot. When
an Exception is set to a robot type, the RobotNum value is initially set to 1.

Examples

Dim exc1 As New Exception ' Create new general exception
exc1.RobotError = True ' Indicate its a robot error
exc1.ErrorCode = -1006 ' *Robot already attached*
exc1.RobotNum = 3 ' Specify the robot
Console.WriteLine(exc1.Message) ' *Robot already attached* Robot 3

See Also

Exception Handling | exception_object.RobotError | exception_object.Axis

54

File and Serial I/O Classes
File and Serial I/O Classes Summary

The following pages provide detailed information on the properties and methods for the
various classes that implement both file and serial port input and output communications.

The File Class is designed specifically for managing disk files and disk file directories.
The StreamReader and StreamWriter Classes apply to both file and serial
communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

File Class Member Type Description

File.CreateDirectory Shared
Method

Creates a file directory and the path to the
directory.

File.DeleteDirectory Shared
Method

Deletes a single, empty file directory.

File.DeleteFile Shared
Method

Deletes a single file.

File.GetDirectories Shared
Method

Returns an array of strings containing the
names of directories in a directory.

File.GetFiles Shared
Method

Returns an array of strings containing the
names of files in a directory.

StreamReader Member Type Description

New StreamReader Constructor
Method

Opens a file or serial port device for reading.

streamreader_obj.Close Method
Closes the file or device associated with a
StreamReader Object.

streamreader_obj.Peek Method
Returns the next byte from an input stream
without removing it from the stream.

streamreader_obj.Read Method
Returns the next byte from an input stream
and removes it from the stream.

streamreader_obj.ReadLine Method
Reads a line from the input stream
terminated by LF, CR, or CR-LF.

StreamWriter Member Type Description

New StreamWriter Constructor
Method

Opens a file or serial port device for writing.

streamwriter_obj.AutoFlush Property
Sets or gets the property that controls
whether or not output is buffered.

streamwriter_obj.Close Method Closes the file or device associated with a

File and Serial I/O Classes

55

StreamWriter Object.

streamwriter_obj.Flush Method
Immediately writes any buffered data for a
StreamWriter Object.

streamwriter_obj.NewLine Property
Sets or gets the property that controls how
lines are terminated by the WriteLine
method.

streamwriter_obj.Write Method
Writes a number or a String to an output
device or file.

streamwriter_obj.WriteLine Method
Writes a number or a String to an output
device or file, followed by the NewLine line
terminator.

GPL Dictionary Pages

56

File.CreateDirectory Method

Creates a file directory and the path to the directory.

File.CreateDirectory (path)

Prerequisites

Directories can only be created on the devices "/ROMDISK" and "/flash".

Parameters

path

A String that contains the path for the directory to create, beginning with
the device name and ending with the new directory name.

Remarks

This method creates a directory in the location specified by the path parameter. If any
intermediate directories in the path are undefined, they are automatically created.

An error occurs if the final directory already exists.

If any error occurs, this method throws an Exception.

Examples

File.CreateDirectory("/ROMDISK/temp/new_directory") ' Create "new_directory"
 ' Also creates "temp" if
needed

See Also

File and Serial I/O | File.DeleteDirectory

File and Serial I/O Classes

57

File.DeleteDirectory Method

Deletes a single, empty file directory.

File.DeleteDirectory (path)

Prerequisites

The directory must be empty.

Parameters

path

A String that contains the path for the directory to delete, beginning with
the device name and ending with the new directory name.

Remarks

This method deletes a single directory in the location specified by the path parameter,
provided that the directory is empty. If any files or sub-directories exist within the
directory, an error occurs.

An error also occurs if the final directory does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteDirectory("/ROMDISK/temp/new_directory") ' Delete "new_directory"
 ' if empty

See Also

File and Serial I/O | File.CreateDirectory | File.DeleteFile

GPL Dictionary Pages

58

File.DeleteFile Method

Deletes a single file.

File.DeleteFile (path)

Prerequisites

The file cannot be open for read or write.

Parameters

path

A String that contains the path to the file to delete, beginning with the
device name and ending with the file name.

Remarks

This method deletes a single file in the location specified by the path parameter.

An error occurs if the file does not exist.

If any error occurs, this method throws an Exception.

Examples

File.DeleteFile("/ROMDISK/myfile.txt") ' Delete "myfile.txt"

See Also

File and Serial I/O | File.DeleteDirectory

File and Serial I/O Classes

59

File.GetDirectories Method

Reads a directory, gets the names of all sub-directories, and returns them in an array of
Strings.

<string_array> = File.GetDirectories (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK" and "/flash".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of sub-directories within a
directory. If the specified directory path does not exist, this method throws an exception.

One sub-directory name is returned per array element. The length of the returned String
array indicates how many sub-directories were discovered. The sub-directory names are
relative to the specified path.

If sub-directories are being actively created or deleted when this method is invoked,
some existing sub-directories may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetDirectories(path)
Console.Writeline(CStr(files.Length) & " directories seen")
For ii = 1 To files.Length
 Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetFiles

GPL Dictionary Pages

60

File.GetFiles Method

Reads a directory, gets the names of all non-directory files, and returns them in an array
of Strings.

<string_array> = File.GetFiles (path)

Prerequisites

Directories can only be read on the devices "/ROMDISK" and "/flash".

Parameters

path

A required String expression that contains the path to the directory that
is to be read. The path may not specify wild-card file name matching.

Remarks

This method permits a GPL program to retrieve the names of files within a directory. If the
specified directory path does not exist, this method throws an exception.

One file name is returned per array element. The length of the returned String array
indicates how many files were detected. The file names are relative to the specified path.

If files are being actively created or deleted when this method is invoked, some existing
files may be missed or a blank String element may be returned.

Examples

Dim files() As String
Dim ii As Integer
files = File.GetFiles(path)
Console.Writeline(CStr(files.Length) & " files seen")
For ii = 1 To files.Length
 Console.Writeline("File " & CStr(ii) & ": " & files(ii-1))
Next ii

See Also

File and Serial I/O | File.GetDirectories

File and Serial I/O Classes

61

New StreamReader Constructor

Constructor for creating a StreamReader Object. Also opens a file or device for reading.

New StreamReader (path)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Local serial
ports are devices named "/dev/com1", "/dev/com2", etc. Remote serial
ports are named "/dev/comrxy" where "x" is the number of the remote
device and "y" is the number of the serial port on the remote device.
Temporary files may be placed on device "/ROMDISK" and permanent
files may be placed on "/flash".

Remarks

This method opens a file or device and associates it with a new StreamReader Object.

If any error occurs, this constructor throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1") ' Open serial port #1
Dim tfile As New StreamReader("/ROMDISK/test.tmp") ' Open temporary file
Dim pfile As New StreamReader("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O | New StreamWriter

GPL Dictionary Pages

62

streamreader_object.Close Method

Closes the file or device associated with a StreamReader Object.

steamreader_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamReader Object. If
any I/O error occurs, it throws an Exception. No error occurs if the file or device is not
currently open.

Examples

streamreader_object.Close()

See Also

File and Serial I/O | New StreamReader

File and Serial I/O Classes

63

streamreader_object.Peek Method

Returns the next byte from an input stream without removing it from the stream.

...steamreader_object.Peek()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an Integer, but it does not
remove the byte from the stream. The next input method call will still return this byte.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method does not block, but immediately returns -1 if no bytes are
available to read.

If no device or file is open, this method throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1")
Dim c As Integer
c = com1.Peek()

See Also

File and Serial I/O | streamreader_object.Read

GPL Dictionary Pages

64

streamreader_object.Read Method

Returns the next byte from an input stream and removes it from the stream.

...steamreader_object.Read()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns the next byte from the input stream as an integer. The byte is
removed from the stream so that subsequent calls do not return it.

If any I/O error occurs or an end-of-file is encountered, this method returns -1.

For serial devices, this method blocks if no bytes are available to read.

Be careful when using this method to read data from a serial port since it blocks until a
byte is available. If for some reason the byte is lost due to an error, this method will
continue blocking and hang your procedure.

If no device or file is open, this method throws an Exception.

Examples

Dim com1 As New StreamReader("/dev/com1")
Dim c As Integer
c = com1.Read()

See Also

File and Serial I/O | streamreader_object.Peek | streamreader_object.ReadLine

File and Serial I/O Classes

65

streamreader_object.ReadLine Method

Reads a line from the input stream terminated by LF, CR, or CR-LF.

...steamreader_object.ReadLine()

Prerequisites

The input stream must have been opened using a New to create the
streamreader_object.

Parameters

None

Remarks

This method returns a String containing the next bytes in the input stream up to the next
LF character (decimal value 10, GPL_LF) or CR character (decimal 13, GPL_CR). It
blocks until the data followed by these line terminators is received or the end-of-file is
seen.

Any LF, CR, or CR-LF pair is removed from the end of the string.

Note that the StreamWriter NewLine property does not have any effect on how
ReadLine interprets the end of line.

Be careful when using this method to read data from a serial port since it blocks until a
line terminator is seen. If for some reason the line terminator is lost or corrupted due to
an error, this method will continue blocking and hang your procedure.

If some other I/O error occurs, this method throws an Exception.

Examples

Dim file As New StreamReader("/flash/data.txt")
Dim line As String
line = file.ReadLine()

See Also

File and Serial I/O | streamreader_object.Read

GPL Dictionary Pages

66

New StreamWriter Constructor

Constructor for creating a StreamWriter Object. Also opens a file or device for writing.

New StreamWriter (path)
-or-
New StreamWriter (path, append)

Prerequisites

None

Parameters

path

A String that contains the path for the file or device to open. Serial ports
are devices named "/dev/com1", "/dev/com2", etc. Remote serial ports
are named "/dev/comrxy" where "x" is the number of the remote device
and "y" is the number of the serial port on the remote device. Temporary
files may be placed on device "/ROMDISK" and permanent files may be
placed on "/flash".

append

A Boolean value that determines whether or not new data should be
appended to the end of an existing file. If append is False, a new file is
always created, overwriting any existing file with the same name.

Remarks

This method opens a file or device and associates it with a new StreamWriter Object.

By default, AutoFlush is enabled for serial ports but not for files.

If any error occurs, this method throws an Exception.

Examples

Dim com1 As New StreamWriter("/dev/com1") ' Open serial port #1
Dim tfile As New StreamWriter("/ROMDISK/test.tmp") ' Open temporary file
Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file

See Also

File and Serial I/O | New StreamReader | streamwriter_object.AutoFlush

File and Serial I/O Classes

67

streamwriter_object.AutoFlush Property

Sets or gets the AutoFlush property that controls whether or not output is buffered.

steamwriter_object.AutoFlush = <boolean_value>
-or-
...steamwriter_object.AutoFlush

Prerequisites

None

Parameters

None

Remarks

Setting this property to True causes output requests to immediately write data to the file
or device. Setting it to False buffers the output and lets the system decide when to write
it. Buffered output is always immediately written when a Flush or Close method is
executed.

Setting AutoFlush to True for files may significantly slow down any write operations.

By default, AutoFlush is set to True for serial ports and False for files.

Examples

Dim pfile As New StreamWriter("/flash/save.txt") ' Open permanent file
pfile.AutoFlush = True

See Also

File and Serial I/O | streamwriter_object.Flush

GPL Dictionary Pages

68

streamwriter_object.Close Method

Closes the file or device associated with a StreamWriter Object.

steamwriter_object.Close

Prerequisites

None

Parameters

None

Remarks

This method closes the file or device that is associated with a StreamWriter Object. Any
pending buffered output is written before the close completes.

If buffered output is being written, this method blocks until the output is complete.

If any I/O error occurs, this method throws an Exception. No error occurs if the file or
device is not currently open.

Examples

streamwriter_object.Close()

See Also

File and Serial I/O | New StreamWriter

File and Serial I/O Classes

69

streamwriter_object.Flush Method

Immediately writes any buffered data for a StreamWriter Object.

steamwriter_object.Flush

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

None

Remarks

This method immediately writes any buffered data to the output device or file. When
output is performed, this method blocks until it is complete.

Calling the Flush method is redundant if the AutoFlush property is set to True.

Explicit flush operations are more efficient than setting AutoFlush to True if you are
performing a number of small write requests. If AutoFlush is True, each small write
request causes output to occur. If AutoFlush is False, the small write requests can be
buffered and the entire buffer is written by a single Flush.

A Flush equivalent is always performed by the Close method.

If any I/O error occurs, this method throws an Exception.

Examples

Dim com As New StreamWriter("/dev/com1")
com.AutoFlush = False ' Disable automatic flush
com.Write("Write")
com.Write(" a short ")
com.WriteLine("message")
com.Flush

See Also

File and Serial I/O | streamwriter_object.AutoFlush

GPL Dictionary Pages

70

streamwriter_object.NewLine Property

Sets or gets the NewLine property that controls how lines are terminated by the
WriteLine method.

steamwriter_object.NewLine = <newline_string>
-or-
...steamwriter_object.NewLIne

Prerequisites

None

Parameters

None

Remarks

This property is a string of 0, 1 or 2 bytes that is appended to the end of any output
performed by the streamwriter_object.WriteLine method.

By default the NewLine value is a 2-byte string containing an ASCII CR character
(decimal 13, GPL_CR) followed by an LF character (decimal value 10, GPL_LF).

Typical settings for this property are CR, LF, or CR-LF. If set to an empty string, no
terminator is added to the end of lines.

Examples

Dim pfile As New StreamWriter("/dev/com1") ' Open serial port 1
pfile.NewLine = Chr(GPL_LF) ' Set terminator to LF (10)

...

pfile.NewLine = Chr(GPL_CR) ' Set terminator to CR (13)

See Also

File and Serial I/O | streamwriter_object.WriteLine

File and Serial I/O Classes

71

streamwriter_object.Write Method

Writes a number or a String to an output device or file.

steamwriter_object.Write(number)
-or-
steamwriter_object.Write(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.Write("Test ") ' Writes "Test "
tfile.Write(3.14) ' Writes "3.14" on the same line as "Test "

See Also

File and Serial I/O | streamwriter_object.WriteLine

GPL Dictionary Pages

72

streamwriter_object.WriteLine Method

Writes a number or a String to an output device or file, followed by the NewLine line
terminator.

steamwriter_object.WriteLine(number)
-or-
steamwriter_object.WriteLine(string_value)

Prerequisites

The output stream must have been opened using a New to create the
streamwriter_object.

Parameters

number

A numeric value that is converted to a String and written.

string_value

A String expression this is written. Each byte of the String may be an
arbitrary 8-bit value.

Remarks

This method is the same as the Write method with the addition that it appends the value
of the NewLine property to any output requests.

This method writes String data to an output device or file. If a number is passed as the
argument, it is first converted to an ASCII String value and then output.

Buffering of data is determined by the setting of the AutoFlush property. When output is
actually performed, this method blocks until it is complete.

If any I/O error occurs, this method throws an Exception.

Examples

Dim tfile As New StreamWriter("/ROMDISK/test.tmp")
tfile.WriteLine("Test") ' Writes "Test"
tfile.WriteLine(3.14) ' Writes "3.14" on the line following "Test"

See Also

File and Serial I/O | streamwriter_object.NewLine | streamwriter_object.Write

73

Functions
Function Summary

The following sections present detailed information on the standard functions that are
supported by GPL. These functions are not grouped into a specific Class and are
provided in this manner to be compatible with other Basic Language systems.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these functions to deal with the different possible mixes of
input parameter data types. Also, these functions generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the system functions that are described in greater
detail in the following sections.

Function Description

CBool (expression) Converts any numeric type or String to Boolean
CByte (expression) Converts any numeric type or String to Byte.
CDbl (expression) Converts any numeric type or String to Double.
CInt (expression) Converts any numeric type or String to Integer.
CShort (expression) Converts any numeric type or String to Short.
CSng (expression) Converts any numeric type or String to Single.
CStr (expression) Converts any numeric type to String.

Fix (number) Truncates towards zero any numeric type returning only
the integer portion of the number.

Hex (expression)
Converts an Integer value to String in Hexadecimal
format.

Int (number) Truncates towards negative infinity any numeric type
returning only the integer portion of the number.

Rnd (seed) Returns a pseudo random number.

GPL Dictionary Pages

74

CBool Function

Converts any numeric type or String to a Boolean value.

...CBool (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

75

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

76

CByte Function

Converts any numeric type or String to a Byte value.

...CByte (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

77

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

78

CDbl Function

Converts any numeric type or String to a Double value.

...CDbl (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

79

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

80

CInt Function

Converts any numeric type or String to an Integer value.

...CInt (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

81

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

82

CShort Function

Converts any numeric type or String to a Short value.

...CShort (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Functions

83

Examples

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

84

CSng Function

Converts any numeric type or String to a Single value.

...CSng (expression)

Prerequisites

None

Parameters

expression

A required numeric or string expression. The numeric expression can
yield any type of result, i.e. Boolean, Byte, Double, Integer, Short or
Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

85

Dim s_val As Single
s_val = CInt(3.14159) ' Sets s_val equal to 3
s_val = CByte(300) ' WILL GENERATE AN ERROR

See Also

Functions | Fix Function | Int Function

GPL Dictionary Pages

86

CStr Function

Converts any numeric type to a String value.

...CStr (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

87

Dim stg As String
stg = CStr(3.14159) ' Sets stg equal to "3.14159"

See Also

Functions | Fix Function | Format Function | Int Function

GPL Dictionary Pages

88

Fix Function

Returns the integer portion of any number by truncating towards zero.

...Fix (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

Functions

89

See Also

Functions | Int Function

GPL Dictionary Pages

90

Hex Function

Converts an Integer value to a String value in Hexadecimal format.

...Hex (expression)

Prerequisites

None

Parameters

expression

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single,
however, the value is converted to Integer prior to conversion to a String
value.

Remarks

The conversion operators are a group of functions that convert an expression that
evaluates to any numeric or string type into a specified data type. The conversion tests
that the converted value falls within the proper range of values for the returned data type.
If the converted value is out of range, and error is generated.

As opposed to the Int and Fix functions, the conversion functions convert real numbers
to integers by rounding rather than truncation.

The following table summarizes all of the conversion functions.

Function Returned Data Type Range of Valid Expression Values

CBool Boolean Any 0 or non-zero value

CByte Byte 0 to 255

CDbl Double -1.79769313486231E+308 to
-4.94065645841247E-324 for negative values;
4.94065645841247E-324 to
1.79769313486231E+308 for positive values.

CInt Integer -2,147,483,648 to 2,147,483,647

CShort Short -32768 to 32767

CSng Single -3.402823E+38 to -1.401298E-45 for negative values;
1.401298E-45 to 3.402823E+38 for positive values.

CStr String Any valid Double value

Hex String Any valid Integer value

Examples

Functions

91

Dim stg As String
Dim ii As Integer
ii = CInt("&H1234") ' Sets ii equal to 4660
stg = Hex(ii) ' Sets stg equal to "1234"

See Also

Functions | Fix Function | Format Function | Int Function

GPL Dictionary Pages

92

Int Function

Returns the integer portion of any number by truncating towards negative infinity.

...Int (number)

Prerequisites

None

Parameters

number

A required numeric expression. The numeric expression can yield any
type of result, i.e. Boolean, Byte, Double, Integer, Short or Single.

Remarks

The Int and Fix functions return the integer portion of any number by truncating the
fraction part of the value. For positive numbers, these two functions are identical.
However, for negative numbers, the Int function returns the first negative number less
than or equal to the input expression value. Alternately, the Fix function returns the first
negative number that is greater than or equal to the input expression value. For
example:

Dim s_val As Single
s_val = Int(-1.2) ' Sets s_val equal to -2
s_val = Fix(-1.2) ' Sets s_val equal to -1
s_val = Int(-1.9) ' Sets s_val equal to -2
s_val = Fix(-1.9) ' Sets s_val equal to -1

Unlike the conversion routines (e.g. CInt, CShort), these functions truncate their values
rather than round them. For example:

Dim s_val As Single
s_val = Int(1.2) ' Sets s_val equal to 1
s_val = CInt(1.2) ' Sets s_val equal to 1
s_val = Int(1.9) ' Sets s_val equal to 1
s_val = CInt(1.9) ' Sets s_val equal to 2

In addition, the conversion routines test the converted values to ensure that the returned
value is within the range of a specific data type. The Int and Fix routines simply
eliminate the fraction portion of any number and perform no range testing.

Examples

Functions

93

Dim s_val As Single
s_val = Int(3.14159) ' Sets s_val equal to 3
s_val = Int(3.99999) ' Sets s_val equal to 3

See Also

Functions | Fix Function

GPL Dictionary Pages

94

Rnd Function

Returns a pseudo random number.

...Rnd (seed)

Prerequisites

None

Parameters

seed

An optional expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a pseudo random number whose value is greater than or equal to 0 and less
than 1.0.

The returned value is only pseudo random because the returned numbers are part of an
extremely long sequence of values that only repeat after 2^32 numbers are generated.
Each time that the controller is restarted, the starting point or seed in the sequence is
determined by the system clock calendar. So, the sequence of values produced by this
function appears quite random for normal testing purposes.

If it is desired to force the sequence of numbers to restart at a fixed value, thereby
allowing a test to be exactly repeated, the optional seed parameter can be used as
follows:

seed value Effect on function

<0 The specified seed value is taken as the starting point for the pseudo
random sequence and the sequence will be continued from this value. The
number returned by this execution of the Rnd will always be the same.

=0 The last value returned by the Rnd function will be returned again.

>0 The next number in the pseudo random sequence will be returned.

Not specified Same as specifying a seed value >0.

Examples

Dim r_val As Single
r_val = Rnd() ' Sets r_val to some random value
r_val = Rnd(-1) ' Forces seed to –1, will return same number
 ' each time.
r_val = Rnd() ' Returns next value after seed
r_val = Rnd(0) ' Returns same value as last line above

Functions

95

See Also

Functions

96

Location Class
Location Class Summary

The following pages provide detailed information on the properties and methods of the
Location Class. This class and its Location Object instances provide the fundamental
means for representing robot and part positions and orientations within GPL. Location
Objects and Profile Objects (which define motion performance parameters) are the
standard arguments required by most Move methods for defining how to drive the robot
along a path to a destination specified by a Location.

Each Location Object contains data that defines: a Type indicator; a position and
orientation; clearance information that is used to safely approach the Location; and robot
configuration specific information that pertains to the target robot.

There are two Type’s of Location Objects: Angles and Cartesian. The Angles
Locations store robot positions as an array of axes positions. When we refer to the
“position” or “total position” of an Angles Location, we are referring to the array of axes
positions. The more general Type is called a Cartesian Location. Cartesian Locations
contain a Cartesian position and orientation that is displayed as an X, Y, Z displacement
and a set of three Euler Angles: Yaw, Pitch, and Roll. In addition to this position and
orientation, each Cartesian Location contains an optional pointer to a reference frame
object. The X, Y, Z, Yaw, Pitch, and Roll values define the Location’s “position with
respect to the reference frame” (PosWrtRef). When we refer to the “position” or “total
position” of a Cartesian Location, we are discussing the combined effect of the “position
with respect to the reference frame” and any specified reference frames.

Since flexible automation must alter a robot’s actions in order to accommodate to
variations in a material handling, assembly or other type of operation, extensive methods
are provided for mathematically manipulating the position and orientation of Locations.
The table below briefly summarized the properties and methods that are described in
greater detail in the following sections.

Member Type Description

location_obj.Angle Property
Sets and gets a single axis position for an
Angles Location.

location_obj.Angles Method
Changes all of the axes positions values in
an Angles Location.

location_obj.Clone Method Returns a copy of the location_obj.

location_obj.Config Property
Sets and gets the bit flags that specify special
robot specific location attributes.

Location.Distance Method
Returns the distance between the XYZ
positions of two Cartesian Locations.

location_obj.Here Method
Modifies the “total position” of the
location_obj to be equal to the current
location of a robot.

location_obj.Here3 Method
Defines the "total position" of location_obj
based upon the XYZ coordinates of three
specified locations.

location_obj.Inverse Method
Returns the inverse of the “total position” of
the Cartesian location_obj.

Location Class

97

location_obj.Kinesol Method
Returns a Cartesian Location equivalent to
an Angles Location for a specific kinematic
model or vise versa.

location_obj.Mul Method
Returns the result of combining the “total
position” of location_obj with the “total
position” of another Cartesian Location.

location_obj.Normalize Method
Corrects the value of the PosWrtRef of a
Cartesian Location for any mathematical
inconsistencies in the value.

location_obj.Pitch Property
Sets and gets the Pitch angle of the
PosWrtRef of a Cartesian Location.

location_obj.Pos Property
Sets and gets the “total position” of the
location_obj.

location_obj.PosWrtRef Property
Sets and gets the PosWrtRef of a Cartesian
Location.

location_obj.RefFrame Property
Sets and gets a pointer to the reference
frame object that the location_object is
defined relative to.

location_obj.Roll Property
Sets and gets the Roll angle of the
PosWrtRef of a Cartesian Location.

location_obj.Type Property Sets and gets the Type specification.

location_obj.X Property
Sets and gets the X position value of the
PosWrtRef of a Cartesian Location.

location_obj.XYZ Method
Changes the X, Y, Z, Yaw, Pitch, and Roll
values of the PosWrtRef of a Cartesian
Location.

location_obj.XYZInc Method
Increments the X, Y, and Z values of the
PosWrtRef of a Cartesian Location.

Location.XYZValue Method
Returns a Cartesian Location with a "total
position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

location_obj.Y Property
Sets and gets the Y position value of the
PosWrtRef of a Cartesian Location.

location_obj.Yaw Property
Sets and gets the Yaw angle of the
PosWrtRef of a Cartesian Location.

location_obj.Z Property
Sets and gets the Z position value of the
PosWrtRef of a Cartesian Location.

location_obj.ZClearance Property
Sets and gets the distance along the Z-axis
that defines the safe approach position to the
Location.

location_obj.ZWorld Property
Sets and gets the flag that indicates if the
approach distance is measured along the
Tool or World Z coordinate axis.

GPL Dictionary Pages

98

location_object.Angle Property

Sets and gets the position of a single robot axis, in units of millimeters or degrees, to and
from an Angles Location Object.

location_object.Angle(axis) = <new_numeric_value>
-or-
...location_object.Angle(axis)

Prerequisites

The location_object must be an Angles Location Object.

Parameters

axis

A required numeric expression that specifies the number of the axis to be
accessed. This value can range from 1 for the first axis up to a maximum
value of 12.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angle property allows a program to access and manipulate individual axis position
values. To set all of the axes positions at one time, the Angles method should be utilized.

If the location_object is not of the Angles type, accessing the Angle property will
generate an error.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type and define position
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angles

Location Class

99

location_object.Angles Method

Changes all of the axes positions values stored in an Angles Location Object.

location_object.Angles(axis_1, ..., axis_12)

Prerequisites

None

Parameters

axis_1,…,axis_12

Up to 12 optional numeric expressions that specifies the new position
value for each of the robot axes. If an expression is not specified, the
corresponding axis position will default to a value of 0. Each value is in
units of millimeters or degrees as appropriate for the axes.

Remarks

An Angles Location Object stores the position of the robot as a set of axes position
values. For generality, a Location Object always contains 12 axes positions although
the trajectory generation task will only make use of one value for each axis configured for
the robot.

The Angles method sets the values of all of the axes positions in the location_object.
Any unspecified positions are set to 0. To read or write individual axis positions, the
Angle property should be utilized.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the location_objectType will be set to indicate it is an Angles
Location Object.

Examples

Dim loc1 As New Location ' Create new Location with default values
Dim ang As Double
loc1.Angles(-21.5, 23.2, 10) ' Set loc1 to Angles type and define
ang = loc1.Angle(2) ' ang will be set to 23.2
loc1.Angle(2) *= 2 ' Position of axis 2 will be 46.4

See Also

Location Class | location_object.Angle

GPL Dictionary Pages

100

location_object.Clone Method

Method that returns a copy of the location_object.

...location_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples

Dim loc1 As New Location ' Create new location set to default values
Dim loc2 As Location ' Create new location with no data allocated
loc1.X = 10.2 ' Set X position in loc1.
loc2 = loc1.Clone ' Makes a copy of loc1 data
loc2.Y = -27.1 ' Doesn't affect loc1 data

See Also

Location Class

Location Class

101

location_object.Config Property

Sets and gets an Integer bit mask that specifies how the Cartesian position of a
Location Object is to be converted to a set of axes position values.

location_object.Config = <new_Integer_value>
-or-
...location_object.Config

Prerequisites

None

Parameters

None

Remarks

For some robots, there are multiple sets of axes positions that will position the robot’s tool
or gripper at the same position and orientation. For simple robots, this can occur if a wrist
axis can rotate more than 360 degrees. For more complex geometries, the alternate sets
of axes positions might correspond to what is termed “right” and “left” shoulder
configurations.

GPL’s optional kinematic modules include methods for automatically selecting among
different sets of positions in some instances. For example, if the final wrist axis of a robot
can rotate a total of 720 degrees, GPL can automatically select which revolution of this
axis should be selected as the destination for a motion to a Cartesian end point.
Normally, GPL will rotate the wrist to the closest position that satisfies the Cartesian
specification. However, if this would violate a wrist joint limit stop, GPL will rotate the
wrist in the opposite direction.

In other cases, GPL cannot automatically select the best set of joint angles to be used.
In these cases, GPL will generally try to maintain the robot in the same configuration
unless instructed otherwise. For example, if a position can be reached in both a "right"
and a"left" shouldered configurations, GPL will maintain the same shoulder configuration
unless explicitly directed to change. This is done to prevent large, unexpected motions
that can occur when switching the shoulder configuration.

To both indicate the current geometric configuration and to specify a change in
configuration, the Config property provides a series of bit flags that instruct GPL how it is
to convert Cartesian Locations into joint angles. When a Cartesian destination is
specified with one or more of these bits set, the next motion to this Location will try to put
the robot into the specified configuration. If bits are not set, GPL assumes that the robot
should be instructed to stay in its current configuration.

While some configuration changes can be implemented during either a Cartesian or joint-
interpolated motion, other changes can only be performed during joint-interpolated
motions. For example, you cannot change from a right to a left shouldered configuration

GPL Dictionary Pages

102

and simultaneously move the tool tip along a Cartesian straight-line path. If a
configuration bit is specified which is not compatible with the specified motion type, the
configuration bit is ignored and no error is generated.

The bits currently defined for the Config property are described in the following table. As
a programming convenience, these bits also have GPL constants defined.

Config
Bit

Mask

GPL
Constant

Legal During
Cartesian

Motion
Description

 &H01 GPL_Righty No Change robot to a right shouldered configuration.

 &H02 GPL_Lefty No Change robot to a left shouldered configuration.

 &H04 GPL_Above No Change robot to have the elbow above the wrist.

 &H08 GPL_Below No Change robot to have the elbow below the wrist.

 &H10 GPL_Flip No Change robot to have the wrist pitched up.

 &H20 GPL_NoFlip No Change robot to have the wrist pitched down.

 &H1000 GPL_Single Yes Restrict the wrist axis to be within +/- 180
degrees rather than use its full range of motion.

Since the robot configuration options are a function of the robot's geometry, please see
the documentation in the Kinematics Library for which bits apply to your robot.

Examples

Dim loc1 As New Location ' Create new Cartesian Location
loc1.Config = GPL_Righty+GPL_Single
 ' Set mask word to force robot to right
 ' shouldered and limit wrist rotation

See Also

Location Class | Robot.Dest | Robot.Where

Location Class

103

Location.Distance Method

Returns the distance between the XYZ positions of two Cartesian Location Objects.

...Location.Distance(location_object1, location_object2)

Prerequisites

location_object1 and location_object2 must both be Cartesian Location Objects.

Parameters

location_object1

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method computes the distance between the positions of two Cartesian Location
Objects and returns the result as a Double.

Examples

Dim a As New Location ' Create Locations and allocate
Dim b As New Location
Dim dist As Double
a.XYZ(10,23,-17,0,0,90) ' Define A, orientation doesn't matter
b.XYZ(21,8,12) ' Define B
dist = Location.Distance(a,b) ' dist set equal to 34.45287

See Also

Location Class

GPL Dictionary Pages

104

location_object.Here Method

Sets the “total position” of a Location Object equal to the current position and orientation
of the Selected robot.

location_object.Here

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

None

Remarks

The Here method provides a very convenient means for defining or updating the “total
position” of a location_object by moving the robot to the desired position and then
executing this method to record the position and orientation.

This method works properly for both Cartesian and Angles Locations. If the
location_object is an Angles type, the values of the location_object’s axes positions are
set equal to the current axes positions of the Selected robot. For Cartesian types, the
“total position” is set equal to the current Cartesian position and orientation of the
Selected robot. If the location_object does not have an associated reference frame, the
PosWrtRef is set equal to the current Cartesian location of the robot. If the
location_object has a reference frame, the PosWrtRef is set such that the combination of
the new PosWrtRef and the reference frame will be equal to the current location of the
robot.

While the Here method is similar to assigning a location_object to the value of the
Robot.Where() method, it is important to understand the differences. The statement:

location_object = Robot.Where() ' Works okay

assigns a new block of data to the location_object. While it does save the current robot
location in the location_object, the values previously set for ZClearance, ZWorld, and
RefFrame are effectively lost. On the other hand, the statement:

location_object.Here ' Even better

alters the PosWrtRef value in the location_object with less overhead while still
preserving the values for ZClearance,ZWorld, and RefFrame. So, in most situations, the
Here method produces the expected results and should be employed instead of an
assignment statement with Robot.Where().

Examples

Location Class

105

Dim loc1 As New Location ' Create new Location set to default values
loc1.Here ' Sets "total position" of loc1 to present
 ' location of Selected robot.

See Also

Location Class | location_object.Here3 | location_object.Inverse | location_object.Mul | Robot.Selected
| Robot.Where | Robot.WhereAngles

GPL Dictionary Pages

106

location_object.Here3 Method

Defines the "total position" of a Location Object based upon the XYZ coordinates of
three specified Locations.

location_object.Here3(location_0, location_x, location_y)

Prerequisites

location_0, location_x and location_y must be Cartesian Location Objects.

Parameters

location_0

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_x

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

location_y

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method is utilized for setting the "total position" of location_object based upon the
XYZ position coordinates of three Locations. This is convenient if you wish to define the
orientation and position of a Location or reference frame by teaching three Locations.

The total position of the location_object is computed as follows:


 The XYZ coordinates of the location_object are set equal to the XYZ coordinates of the

total position of location_0. That is, the XYZ coordinates of location_0 define the 0,0,0
position of the coordinate system defined by the new value of location_object.

 The direction of the x-axis of location_object is defined to be parallel to the vector from
the XYZ coordinate of location_0 to the XYZ coordinate of location_x. That is, if the XYZ
position of location_0 is equivalent to the 0,0,0 position of the coordinate frame defined
by the new value of location_object, then the XYZ position of location_x will be a point
on the x-axis of the coordinate system defined by the new value of location_object.

 The XY plane of the new location_object value is defined by the XYZ coordinates of
location_0, location_x, and location_y. Normally, location_y is defined such that its XYZ
position will be a point on the y-axis of the coordinate system defined by the new value
of location_object.

Location Class

107

At the completion of this method, the PosWrtRef value of the location_object will be set
such that the total position of location_object corresponds to the position and orientation
defined by three points represented by the three Location arguments. Also, as a
convenience, the Type of the location_object is always set to indicate it is a Cartesian
Location Object.

Examples

Dim loc1 As New Location ' Define position of this Location
Dim loc0 As New Location
Dim locx As New Location
Dim locy As New Location
loc0.XYZ(10,20,30) ' Define 0,0,0
locx.XYZ(10,25,30) ' Define point on X-axis
locy.XYZ(5,20,30) ' Define point on Y-axis
loc1.Here3(loc0,locx,locy) ' Will define loc1 to same as
 ' loc1.XYZ(10,20,30,0,0,90)

See Also

Location Class | location_object.Here | location_object.XYZ

GPL Dictionary Pages

108

location_object.Inverse Method

Returns the inverse of the “total position” of the Cartesian location_object.

...location_object.Inverse

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This method evaluates the “total position” of the location_object and then inverts the
value. As defined in the description of GPL, the “total position” is the combination of the
location_object’sPosWrtRef with the “total position” of any reference frame(s) associated
with the location_object.

As an example, if the “total position” of the location_object represents the position and
orientation of part B with respect to part A, then the Inverse will give the position and
orientation of A with respect to B. As another way to think about this operation, if the
location_object defines how to get from A to B then the Inverse will define how to get
from B to A.

Assuming that the location_object is a Cartesian type, the Inverse method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Inverse of the “total position” of the location_object
RefFrame Null
All other properties Same as location_object

Examples

Dim loc1 As New Location ' Create new Location set to defaults
Dim loc2, loc3 As Location
Dim dy As Double
loc1.XYZ(11, -23, 45, 0, 180, 42) ' Define "position" of loc1
loc2 = loc1.Inverse
loc3 = loc2.Inverse ' loc3 will have same "position" as loc1
dy = loc3.Y ' dy will be equal to -23

See Also

Location Class

109

Location Class | location_object.Pos | location_object.Mul | location_object.PosWrtRef

GPL Dictionary Pages

110

location_object.KineSol Method

Returns a Cartesian Location Object equivalent to an Angles Location Object for a
specific kinematic model or vise versa.

...location_object.KineSol

Prerequisites

A robot must be currently Selected, but need not be Attached.

Parameters

None

Remarks

This method converts a set of axes positions to an equivalent Cartesian position and
orientation or converts a Cartesian position and orientation to an equivalent set of axes
positions based upon the Selected robot’s geometry (kinematics). These operations are
typically called the “forward and reverse kinematic solutions” and require an optional
kinematic module.

Specifically, if the location_object is an Angles type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Equivalent to location_object Angles values
Config Appropriate for location_objectAngles values
RefFrame Null
All other properties Same as location_object

Alternatively, if the location_object is a Cartesian type, the KineSol method returns a
Location Object with the following properties:

Property Returned Location Object value

Type Angles Location
Angles Equivalent to location_object’s“total position”
Config 0
RefFrame Null
All other properties Same as location_object

Examples

Location Class

111

Dim loc1 As New Location ' Create new Location set to default values
Dim loc2, loc3 As Location
Dim axis2 As Double
loc1.Angles(12, 42, 17) ' Assume these values legal values for robot
loc2 = loc1.KineSol ' Set loc2 to equivalent Cartesian Location
loc3 = loc2.KineSol ' Regenerate Angles Location
axis2 = loc3.Angle(2) ' axis2 should be 42 as in loc1

See Also

Location Class | location_object.Inverse | location_object.Mul | Robot.Selected

GPL Dictionary Pages

112

location_object.Mul Method

Returns the combination of the position and orientation of a Cartesian location_object
with another Cartesian Location Object.

...location_object.Mul(location_object2)

Prerequisites

location_object and location_object2 must both be Cartesian Location Objects.

Parameters

location_object2

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value.

Remarks

This method combines the “total position” of location_object and the “total position” of
location_object2. As described in the Introduction to GPL, the “total position” of a
Location Object is the combination of the Location Object’sPosWrtRef with the “total
position” of any reference frame(s) associated with the Location Object.

More specifically, the Mul method returns the result of evaluating the “total position” of
location_object2 with respect to the PosWrtRef value of the location_object. If defined,
the reference frame pointer for the location_object is copied to the returned Location and
is not included in the mathematic operation. This is done to preserve the explicit
reference frame relationship of the location_object.

For example, let’s consider the simple case without rotations where the location_object
has an X, Y, Z value of (10,25,-40) and location_object2 has an X, Y, Z value of (0,5,0). If
we now combined the values, location_object2’s incremental displacement of 5 mm along
the Y-axis would be interpreted with respect to location_object’s prior translations and the
combined result would be (10,30,-40). Now, we can see what happens if we change
location_object so it includes a 90-degree rotation about the Z-axis (10,25,-40,0,0,90). In
this case, when we combine the two values, location_object2’s Y-axis has been rotated
to point along location_object’s negative X-axis. So, the resulting combination would be
(5, 25,-40,0,0,90).

Assuming that location_object and location_object2 are both Cartesian Locations, the
Mul method returns a Location Object with the following properties:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef “total position” of the location_object2 evaluated with respect to

the PosWrtRef of the location_object. In terms of matrix

Location Class

113

operations, this could be written as:

returned.PosWrtRef = [location_object.PosWrtRef]
 *[location_object2.RefFrame]
 *[location_object2.PosWrtRef]

RefFrame Same as location_object
All other properties Same as location_object

Examples

Dim a As New Location ' Create new Location set to default values
Dim b As New Location
Dim c As Location
Dim dx, dy As Double
a.XYZ(10,25,-40,0,0,90) ' Define A
b.XYZ(0,5,0) ' Define B
c = a.Mul(b)
dx = c.X ' dx will be 5
dy = c.Y ' dy will be equal to 25

See Also

Location Class | location_object.Inverse | location_object.Pos | location_object.PosWrtRef

GPL Dictionary Pages

114

location_object.Normalize Method

Corrects the PosWrtRef value of a Cartesian Location Object for any mathematical
inconsistencies in the value.

location_object.Normalize

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

After many sequential mathematics operations (e.g. Inverse, Mul) have been performed
on a Cartesian Location Object, it is possible for the homogeneous transformation that
is used to internally store the PosWrtRef value to suffer from mathematical
inconsistencies. For example, certain rows and columns of the 4x4 matrix are vectors
that must have unit values and be orthogonal to other vectors in the matrix. Given that all
of the elements of a transformation are stored as double precision floating-point numbers,
this problem is not very likely to occur.

Nonetheless, as a convenience, the Normalize method can be executed on a Cartesian
location_object and it will correct any mathematic errors that may have accumulated in
the PosWrtRef value.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
loc1.Normalize ' Won't alter loc1 since it is already correct

See Also

Location Class | location_object.Inverse | location_object.Mul

Location Class

115

location_object.Pitch Property

Sets and gets the Pitch angle, in units of degrees, for the PosWrtRef value of a
Cartesian Location Object.

location_object.Pitch = <new_value>
-or-
...location_object.Pitch

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

GPL Dictionary Pages

116

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Roll | location_object.XYZ

Location Class

117

location_object.Pos Property

Sets and gets the “total position” of the location_object.

location_object.Pos = <specified_location_value>
-or-
...location_object.Pos

Prerequisites

None

Parameters

None

Remarks

The Pos operation accesses the “total position” of both Cartesian and Angles Location
Objects. For Cartesian Locations without reference frames, the “total position” is equal
to the PosWrtRef value stored as a Cartesian position and orientation in the
location_object. For Cartesian Locations with reference frames, the “total position” is
equal to the PosWrtRef value of the location_object evaluated with respect to the “total
position” of its reference frames. For Angles Locations, the “total value” is the equal to
the set of axes positions stored in the location_object.

The Pos set operation works properly on all varieties of Locations. However, the type of
the <specified_location_value> must match the type of the location_object, i.e. they must
both either be Cartesian or Angles.

For Cartesian Locations, the “total position” of the location_object is set equal to the
“total position” of the <specified_location_value>. If the location_object does not have an
associated reference frame, the PosWrtRef value is set equal to the “total position” of the
<specified_location_value>. If the location_object has a reference frame, the PosWrtRef
value of the location_object is set such that the combination of the new PosWrtRef value
of the location_object and its reference frame will be equal to the “total position” of the
<specified_location_value>. If the location_object is an Angles type, the value of the
location_object’s axes positions are set equal to the axes positions of the
<specified_location_value>.

While the Pos method is similar to assigning a location_object to the value of another
Location Object, it is important to understand the differences. The statement:

location_object = location_object2

assigns a pointer to location_object2’s data to the location_object. Not only does this
operation supercede any reference frame you may have assigned to location_object, it
also supercedes any other data assigned, such as its ZClearance information.

GPL Dictionary Pages

118

Furthermore, if you subsequently make a change to the data of either location_object or
location_object2, the data for both objects will be effected. Alternatively, you could use
the following assignment statement:

location_object = location_object2.Clone

This statement makes a copy of location_object2’s value before assigning it to
location_object. This statement does eliminate the potential problem of having two
variables inadvertently referencing the same data. However, it does not address
superceding the original reference frame specification and other data. Also, one
additional downside of this operation is that creating a copy of an object’s value does
incur a certain amount of system overhead.

On the other hand, the statement:

location_object.Pos = location_object2

alters the PosWrtRef or Angles values of location_object with low overhead and
preserves all of the other properties of the location_object.

If the goal of a statement is simply to update the existing “total position” or PosWrtRef
value of a Location without regard to the reference frame, you should normally make use
of either the Pos or PosWrtRef set properties.

Regarding the Pos get operation, this property returns a Location Object that contains
only the “total position” of the location_object with no reference frame or other data.
Please note that if the location_object is a Cartesian type with a reference frame, the
position and orientation of the PosWrtRef value and the “total position” of the reference
frame are combined and returned as the PosWrtRef value of the returned Object.

For all cases the value of the returned Object from the Pos get operation is as follows:

Property Returned Location Object value

Type Cartesian or Angles Location as appropriate
PosWrtRef or Angles “total position” of the location_object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim loc1 As New Location ' Create new Location set to defaults
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ(10,20,30,0,180,23) ' Define PosWrtRef value for loc2
loc1.Pos = loc2 ' Use same "total position" for loc1

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.PosWrtRef

Location Class

119

location_object.PosWrtRef Property

Sets and gets the “position with respect to the reference frame” value of a Cartesian
Location Object while ignoring the reference frame.

location_object.PosWrtRef = <specified_location_value>
-or-
...location_object.PosWrtRef

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

This property accesses the “position with respect to the reference frame” of a Cartesian
Location Object. Normally, the PosWrtRef value is evaluated in combination with the
reference frame to compute the “total position” of a Location. However, this property
accesses the “position with respect to the reference frame” data ignoring any specified
reference frame data.

The PosWrtRef set operation allows a statement to assign a new value to the “position
with respect to the reference frame” of the location_object without affecting or considering
the value of any reference frame or any other data of the location_object. The new value
is set equal to the “total position” of the <specified_location_value> on the right hand side
of the equal sign.

The PosWrtRef get operation returns a Cartesian Location Object that contains only the
“position with respect to the reference frame” of the location_object with no reference
frame or other data. In particular, the value of the returned Object is as follows:

Property Returned Location Object value

Type Cartesian Location
PosWrtRef PosWrtRef of the location_object
RefFrame Always NULL
ZClearance 1.0e32 to indicate not initialized

All other properties Always zeroed.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim loc2 As New Location
loc1.ZClearance = 12
loc2.XYZ(10,20,30,0,180,23) ' Define position for loc2
loc1.PosWrtRef = loc2.PosWrtRef ' Use same PosWrtRef for loc1

GPL Dictionary Pages

120

See Also

Location Class | location_object.Inverse | location_object.Mul | location_object.Pos

Location Class

121

location_object.RefFrame Property

Sets and gets a pointer to the reference frame object that the location_object is defined
relative to.

location_object.RefFrame = <reference_frame_object>
-or-
… location_object.RefFrame

Prerequisites

The location_object must be a Cartesian Location.

Parameters

None

Remarks

Sets or gets the pointer to a reference frame object that the location_object’s position and
orientation is to be defined relative to. Whenever the location_object’s total position and
orientation are computed, the position and orientation of the RefFrame are automatically
taken into consideration.

When a new Location Object is defined, its pointer to a reference frame object is zeroed
by default.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
loc1.RefFrame = ref1 ' Define loc1 wrt ref1
loc1.XYZ(10,0,0,0,180,0) ' Define loc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

See Also

Location Class | RefFrame Class

GPL Dictionary Pages

122

location_object.Roll Property

Sets and gets the Roll angle, in units of degrees, for the PosWrtRef value of a Cartesian
Location Object.

location_object.Roll = <new_value>
-or-
...location_object.Roll

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

See Also

Location Class

123

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.XYZ

GPL Dictionary Pages

124

location_object.Type Property

Sets and gets the Integer Type of a Location Object, which indicates if the Location
Object holds Cartesian or Angles data.

location_object.Type = <new_Integer_value>
-or-
...location_object.Type

Prerequisites

None

Parameters

None

Remarks

The Type property indicates if the location_object contains Cartesian or Angles position
and orientation data. The possible values for this property are as follows:

Type Value Description

0 Location contains Cartesian position and orientation data.
1 Location contains a set of axes position values (“Angles”).

Many of the other Location Object properties and methods will generate an error if you
attempt to access values that are not meaningful for the current Type of the
location_object.

As a convenience, some methods, e.g. Angles and XYZ, automatically set the Type of a
Location Object.

When a “New” Cartesian Location is created, its Type is automatically set to Cartesian.

Examples

Dim loc1 As New Location ' Create new Cartesian Location
Dim iType As Integer
iType =loc1.Type ' iType will be set to 0
loc1.Angles(10.2,-3.2) ' Will automatically set Type to 1

See Also

Location Class

Location Class

125

location_object.X Property

Sets and gets the displacement along the X-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.X = <new_value>
-or-
...location_object.X

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dx As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dx = loc1.X ' dx will be set to 10
loc1.X -= 2 ' loc1's X value will now be 8

See Also

GPL Dictionary Pages

126

Location Class | location_object.Y | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

Location Class

127

location_object.XYZ Method

Changes all six components of the PosWrtRef value of a Cartesian Location Object to
a specified set of values.

location_object.XYZ(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

GPL Dictionary Pages

128

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the 3
positional degrees-of-freedom and the 3 rotational degrees-of-freedom needed to fully
specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are entered as X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The XYZ method sets all six Cartesian components of the location_object’s PosWrtRef
value in a single operation. Any unspecified values are set to 0. This operation is much
more efficient than using the X, Y, Z, Yaw, Pitch, and Roll properties to individually set
the component values.

As a convenience, independent of the initial Type of the location_object, at the
conclusion of this operation, the Type will be set to indicate it is a Cartesian Location
Object.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
location_object.Pitch | location_object.Roll | location_object.XYZInc | Location.XYZValue

Location Class

129

location_object.XYZInc Method

Increments the X/Y/Z components of the PosWrtRef value of a Cartesian Location
Object by specified amounts.

location_object.XYZInc(x,y,z)

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

x

An optional numeric expression that specifies the amount by which the X
value is incremented. If this value is not specified, a default value of 0 is
assumed.

y

An optional numeric expression that specifies the amount by which the Y
value is incremented. If this value is not specified, a default value of 0 is
assumed.

z

An optional numeric expression that specifies the amount by which the Z
value is incremented. If this value is not specified, a default value of 0 is
assumed.

Remarks

This method increments the X, Y, and Z Cartesian displacement components of the
location_object’s PosWrtRef value in a single operation. Any unspecified increments
leave the corresponding displacement values unchanged.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
loc1.XYZInc(-3,,2) ' Changes X to 7 and Z to 32

See Also

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Yaw |
Location.XYZValue

GPL Dictionary Pages

130

Location.XYZValue Method

Returns a Cartesian Location with a "total position" equal to specified X, Y, Z, Yaw,
Pitch, and Roll coordinates.

...Location.XYZValue(x,y,z,yaw,pitch.roll)

Prerequisites

None

Parameters

x

An optional numeric expression that specifies the X-axis displacement. If
this value is not specified, a default value of 0 is assumed.

y

An optional numeric expression that specifies the Y-axis displacement. If
this value is not specified, a default value of 0 is assumed.

z

An optional numeric expression that specifies the Z-axis displacement. If
this value is not specified, a default value of 0 is assumed.

yaw

An optional numeric expression that specifies the Yaw angle rotation. If
this value is not specified, a default value of 0 is assumed.

pitch

An optional numeric expression that specifies the Pitch angle rotation. If
this value is not specified, a default value of 0 is assumed.

roll

An optional numeric expression that specifies the Roll angle rotation. If
this value is not specified, a default value of 0 is assumed.

Remarks

The XYZValue method computes and returns a Cartesian Location Object that has a
"total position" value whose displacement and orientation is equivalent to that specified
by the x, y, z, yaw, pitch, and roll arguments. This method is provided as a convenience
for constructing Location expressions.

Location Class

131

If you wish to set the PosWrtRef value of a Cartesian Location Object equal to a set of
displacement and orientation values, it is more efficient to utilize the XYZ method instead
of XYZValue.

The following table describes the data returned in the Location Object.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to the displacement and orientation defined by x, y, z,
yaw, pitch, and roll arguments.

RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim loc1 As Location ' Locations default to Cartesian
loc1.PosWrtRef = Location.XYZValue(10,20,30,0,180,25)
 ' Equivalent to "loc1.XYZ(10,20,30,0,180,25)"

See Also

Location Class | location_object.XYZ

GPL Dictionary Pages

132

location_object.Y Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Y = <new_value>
-or-
...location_object.Y

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dy As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dy = loc1.Y ' dy will be set to 20
loc1.Y += 7 ' loc1's Y value will now be 27

See Also

Location Class

133

Location Class | location_object.X | location_object.Z | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

GPL Dictionary Pages

134

location_object.Yaw Property

Sets and gets the displacement along the Y-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Yaw = <new_value>
-or-
...location_object.Yaw

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim ang As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
ang = loc1.Roll ' ang will be set to 25
loc1.Roll += 5 ' loc1's Roll angle will now be 30 deg.

See Also

Location Class

135

Location Class | location_object.X | location_object.Y | location_object.Z | location_object.Pitch |
location_object.Roll | location_object.XYZ

GPL Dictionary Pages

136

location_object.Z Property

Sets and gets the displacement along the Z-axis, in units of millimeters, for the
PosWrtRef value of a Cartesian Location Object.

location_object.Z = <new_value>
-or-
...location_object.Z

Prerequisites

The location_object must be a Cartesian Location Object.

Parameters

None

Remarks

Internally, the PosWrtRef value of a Cartesian Location Object is stored as a sparse 4
by 4 matrix called a “homogeneous transformation”. This matrix represents the three
positional degrees-of-freedom and the three rotational degrees-of-freedom needed to
fully specify a robot or part position and orientation in Cartesian coordinates. This internal
representation has several computational advantages. However, entering the values for
the elements of a homogeneous transformation is not very convenient. To simplify data
entry, transformation values are converted to X, Y, and Z position displacement
components and three Euler angles. The three Euler angles consist of a rotation about
the Z-axis, followed by a rotation about the new Y-axis, followed by a rotation about the
new Z-axis. This set of displacements and angles is often referred to as X, Y, Z, Yaw,
Pitch, and Roll.

The property described on this page allows read and write access to one of the six
components used to specify the PosWrtRef value of the Cartesian location_object.

Accessing the X, Y, and Z properties is an efficient operation. However, accessing the
Yaw, Pitch, and Roll properties requires some computational overhead. Therefore, if you
wish to set multiple angles, it is more efficient to utilize the XYZ method.

When a “New” Cartesian Location Object is created, all six components are initially set
to 0.

Examples

Dim loc1 As New Location ' Create new Location set to default values
Dim dz As Double
loc1.XYZ(10,20,30,0,180,25) ' Set PosWrtRef value of loc1
dz = loc1.z ' dz will be set to 30
loc1.z += 7 ' loc1's Z value will now be 37

See Also

Location Class

137

Location Class | location_object.X | location_object.Y | location_object.Yaw | location_object.Pitch |
location_object.Roll | location_object.XYZ

GPL Dictionary Pages

138

location_object.ZClearance Property

Sets and gets the distance in millimeters along a Z-axis that defines the safe approach
position to a Location Object.

location_object.ZClearance = <new_value>
-or-
...location_object.ZClearance

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

Location Class

139

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set to default values
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile to move to (10,20,52.3)

See Also

Location Class | location_object.ZWorld | Move.Approach

GPL Dictionary Pages

140

location_object.ZWorld Property

Sets and gets the Boolean flag that indicates if the ZClearance distance is interpreted as
being along the world or tool Z-axis of a Location Object.

location_object.ZWorld = <new_Boolean_value>
-or-
...location_object.ZWorld

Prerequisites

None

Parameters

None

Remarks

For most applications, it is not possible for the robot to move a part directly to its final
destination. Normally, the destination must be approached from an intermediate position
that allows the robot and part to avoid obstacles. Likewise, after picking up a part, it is
typically required that the part be retracted a small distance to avoid dragging the part
across the mating surface. To implement these motions to and from a final destination,
GPL includes a Move.Approach method. Instead of moving to the “total position” of the
location_object, this method moves the robot to a clearance position that is relative to the
location_object.

To simplify the specification of the “approach” or “clearance” position, each
location_object includes a ZClearance distance. This specifies the distance along a Z-
axis for the approach position.

If the ZWorld property of the location_object is True, the clearance position is interpreted
as being directly above (or below) the “total position” of the location_object in the world
coordinate system at the Z value specified by ZClearance. For example, if the “total
position” of the location_object is at an X, Y, Z value of (10,20,30) and ZClearance is
52.3 and ZWorld is True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of the location_object is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of the location_object is at an X, Y, Z
value of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is
pointed along the positive world X-axis, the approach position would be (-42.3,20,30).

Location Class

141

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always want to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, Cartesian approach specifications can
be automatically applied to both Cartesian and Angles location_objects.

Examples

Dim loc1 As New Location ' Create new Location set to defaults
loc1.XYZ(10,20,30,0,180,0) ' Define destination
loc1.ZWorld = True ' Normally defaults to False
loc1.ZClearance = 52.3
Move.Approach (loc1, prof1) ' Use global Profile, move to (10,20,52.3)

See Also

Location Class | location_object.ZClearance | Move.Approach

142

Math Class
Math Class Summary

The following sections present detailed information on the standard arithmetic and
trigonometric operations that are built into GPL. As a convenience during editing, all of
these operations are provided as methods to the Math Class. This allows programmers
to display a pick list of the Math methods and easily see all of operations that are
available.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, it is not necessary
to have different variations on these methods to deal with the different possible mixes of
input parameter data types. Also, these methods generally produce results that are
formatted as Double’s. These results will automatically be converted to smaller data
types as necessary, e.g. Double -> Integer, and will not generate an error so long as
numeric overflow does not occur.

The table below briefly summarizes the methods that are described in greater detail in
the following sections.

Method Description

Math.Abs (expression) Returns the absolute value of any arithmetic expression.

Math.Acos (cosine) Returns the angle that corresponds to a specified cosine
value.

Math.Asin (sine) Returns the angle that corresponds to a specified sine
value.

Math.Atan (tangent) Returns the angle that corresponds to a specified tangent
value.

Math.Atan2 (sine_factor,
cosine_factor)

Returns the angle that corresponds to the quotient of two
values.

Math.Ceiling (value) Returns the smallest integer number that is greater than
or equal to a value.

Math.Cos (angle) Returns the cosine of a specified angle.
Math.Cosh (angle) Returns the hyperbolic cosine of a specified angle.
Math.E Returns the natural logarithmic base constant.

Math.Exp (exponent)
Returns the natural logarithmic constant, e, raised to a
specified power.

Math.Floor (value) Returns the largest integer number that is less than or
equal to a value.

Math.Log (value) Returns the natural logarithm (base-e logarithm) of a
specified value.

Math.Log10 (value) Returns the base-10 logarithm of a specified value.
Math.Max (value_1, value_2) Returns the larger of two values.
Math.Min (value_1, value_2) Returns the smaller of two values.
Math.PI Returns the constant ð.

Math.Pow (base, exponent) Returns a specified base value raised to a specified
power.

Math.Sign (value) Returns a number that indicates the sign of a specified
value.

Math Class

143

Math.Sin (angle) Returns the sine of a specified angle.
Math.Sinh (angle) Returns the hyperbolic sine of a specified angle.
Math.Sqrt (value) Returns the square root of a value.
Math.Tan (angle) Returns the tangent of a specified angle.
Math.Tanh (angle) Returns the hyperbolic tangent of a specified angle.

GPL Dictionary Pages

144

Math.Abs Method

Returns the absolute value of any arithmetic expression.

...Math.Abs(expression)

Prerequisites

None

Parameters

expression

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the absolute value (i.e. the magnitude) of any numerical expression. That is, if
the expression has a value greater than or equal to zero, its value is returned unchanged.
If the expression value is negative, it is negated and returned as a positive value.

Examples

Dim value As Single
value = Math.Abs(-1.23) ' Sets value to 1.23
value = Math.Abs(0) ' Sets value to 0
value = Math.Abs(3) ' Sets value to 3

See Also

Math Class

Math Class

145

Math.Acos Method

Returns the angle that corresponds to a specified cosine value

...Math.Acos(cosine)

Prerequisites

None

Parameters

cosine

A required expression that evaluates to the cosine of an angle. This
value must be in the range –1 <= cosine <= 1.

Remarks

Returns the angle, in radians, that corresponds to a specified cosine value. That is, if the
cosine of an angle A is B, then this arc cosine function returns A when given a value of B.

Since the cosine function generates the same value for both positive and negative
angles, the Math.Acos method returns a value between 0 and ð for any valid input
expression. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/ð. }

Examples

Dim angle As Single
angle = Math.Acos(-1) ' Sets angle to Pi
angle = Math.Acos(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Acos(Math.Cos(-.5)) ' Sets angle to 0.5 radians

See Also

Math Class | Math.Atan2

GPL Dictionary Pages

146

Math.Asin Method

Returns the angle that corresponds to a specified sine value.

...Math.Asin(sine)

Prerequisites

None

Parameters

sine

A required expression that evaluates to the sine of an angle. This value
must be in the range –1 <= sine <= 1.

Remarks

Returns the angle, in radians, that corresponds to a specified sine value. That is, if the
sine of an angle A is B, then this arc sine function returns A when given a value of B.

Since the sine function repeats the same series of answers when an angle traverses from
ð/2 to 0 to –ð/2 as when an angle moves from ð/2 to –ð to –ð/2, the Math.Asin function
cannot distinguish these two cases and always returns values that range from ð/2 to -
ð/2. If the full range of angles is required, the Math.Atan2 method should be used
whenever possible.

To convert radians to degrees, multiply the radians times 180/ð.

Examples

Dim angle As Single
angle = Math.Asin(-1) ' Sets angle to –Pi/2
angle = Math.Asin(Math.Sqrt(2)/2) ' Sets angle to Pi/4
angle = Math.Asin(Math.Sin(Math.PI-.5)) ' Sets angle to 0.5 radians

See Also

Math Class | Math.Atan2

Math Class

147

Math.Atan Method

Returns the angle that corresponds to a specified tangent value.

...Math.Atan(tangent)

Prerequisites

None

Parameters

tangent

A required expression that evaluates to the tangent of an angle.

Remarks

Returns the angle, in radians, that corresponds to a specified tangent value. That is, if the
tangent of an angle A is B, then this arc tangent function returns A when given a value of
B.

Since the tangent function repeats the same series of answers over two ranges of
angles: when an angle traverses from 0 to ð/2 as when an angle moves from -ð to –ð/2
and then again when an angle traverses from 0 to -ð/2 as when an angle moves from -ð
to ð/2, the Math.Atan function cannot distinguish these cases and always returns values
that range from ð/2 to -ð/2.

In addition, as the angle gets close to ð/2 or -ð/2, the input parameter for this method
must approach positive or negative infinity.

To deal with both of these problems, the Math.Atan2 method should be used whenever
possible.

To convert radians to degrees, multiply the radians times 180/ð.

Examples

Dim angle As Single
angle = Math.Atan(1) ' Sets angle to Pi/4
angle = Math.Atan(0) ' Sets angle to 0
angle = Math.Atan(Math.Tan(-3*Math.PI/4)) ' Sets angle to Pi/4

See Also

Math Class | Math.Atan2 Method

GPL Dictionary Pages

148

Math.Atan2 Method

Returns the angle that corresponds to the quotient of two values.

...Math.Atan2(sine_factor, cosine_factor)

Prerequisites

None

Parameters

sine_factor

A required expression, which when divided by cosine_factor, is equal to
the tangent of the angle.

cosine_factor

A required expression, which when divided into sine_factor, is equal to
the tangent of the angle.

Remarks

Returns the angle, in radians, that corresponds to the tangent value computed from
sine_factor/cosine_factor and using the signs of sine_factor and cosine_factor to uniquely
determine the quadrant of the angle.

As a simplified example, if A is the sine of an angle C and B is the cosine of the angle,
then this arc tangent function returns C when given the values A and B.

Unlike the Math.Atan method, this method can return the full range of angles from +ð to
–ð. In addition, it does not suffer from requiring infinite valued parameters in order to
represent any angular value. So, Math.Atan2 should be used whenever possible instead
of Math.Atan.

To convert radians to degrees, multiply the radians times 180/ð.

Examples

Dim angle As Single
angle = Math.Atan2(1,0) ' Sets angle to Pi/2
angle = Math.Atan2(.5,-.5) ' Sets angle to 3*Pi/4
angle = Math.Atan2(-.707,.707) ' Sets angle to -Pi/4

See Also

Math Class

Math Class

149

Math.Ceiling Method

Returns the smallest integer number that is greater than or equal to a value.

...Math.Ceiling (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smallest integer number that is greater than or equal to the value. This is
sometimes referred to as rounding towards positive infinity.

Examples

Dim bigger As Single
bigger = Math.Ceiling(10.9999) ' Sets bigger equal to 11
bigger = Math.Ceiling(11) ' Sets bigger equal to 11
bigger = Math.Ceiling(11.0001) ' Sets bigger equal to 12

See Also

Math Class

GPL Dictionary Pages

150

Math.Cos Method

Returns the cosine of a specified angle.

...Math.Cos(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the cosine of the angle that is specified in radians. The result of this method
ranges from –1 to +1.

To convert degrees to radians, multiply the degrees times ð/180.

Examples

Dim cos_val As Single
cos_val = Math.Cos(0) ' Sets cos_val to 1
cos_val = Math.Cos(21*Math.PI) ' Sets cos_val to -1
cos_val = Math.Cos(45*Math.PI/180) ' Sets cos_val to 0.7071

See Also

Math Class

Math Class

151

Math.Cosh Method

Returns the hyperbolic cosine of a specified angle.

...Math.Cosh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the hyperbolic cosine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times ð/180.

See Also

Math Class

GPL Dictionary Pages

152

Math.E Method

Returns the natural logarithmic base constant.

...Math.E

Prerequisites

None

Parameters

None

Remarks

Returns the constant that is the base value for the natural logarithmic functions,
2.7182818284590452354

Examples

Dim value As Single
value = Math.Pow(Math.E, 2)

See Also

Math Class

Math Class

153

Math.Exp Method

Returns the natural logarithmic constant, e, raised to a specified power.

...Math.Exp(exponent)

Prerequisites

None

Parameters

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of the natural logarithmic constant, Math.E, raised to the exponent
power (i.e. Math.E^exponent).

Examples

Dim e_val As Single
e_val = Math.Exp(2) ' Sets e_val to 7.3891
e_val = Math.Exp(-2.2) ' Sets e_val to 0.1108
e_val = Math.Exp(Math.Log(17.1))' Sets e_val to 17.1

See Also

Math Class

GPL Dictionary Pages

154

Math.Floor Method

Returns the largest integer number that is less than or equal to a value.

...Math.Floor (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the largest integer number that is less than or equal to the value. This is
sometimes referred to as rounding towards negative infinity.

Examples

Dim smaller As Single
smaller = Math.Floor(10.9999) ' Sets smaller equal to 10
smaller = Math.Floor(11) ' Sets smaller equal to 11
smaller = Math.Floor(11.0001) ' Sets smaller equal to 11

See Also

Math Class

Math Class

155

Math.Log Method

Returns the natural logarithm (base-e logarithm) of a specified value.

...Math.Log(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the natural logarithmic constant, Math.E, must be raised
in order to produce the value.

Examples

Dim ln_exp As Single
ln_exp = Math.Log(10) ' Sets ln_exp to 2.3026
ln_exp = Math.Log(Math.E) ' Sets ln_exp to 1
ln_exp = Math.Log(Math.Exp(3.4)) ' Sets ln_exp to 3.4

See Also

Math Class

GPL Dictionary Pages

156

Math.Log10 Method

Returns the base-10 logarithm of a specified value.

...Math.Log10(value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the exponent to which the number 10 must be raised in order to produce the
value.

Examples

Dim l_exp As Single
l_exp = Math.Log10(10) ' Sets l_exp to 1
l_exp = Math.Log10(0.01) ' Sets l_exp to -2
l_exp = Math.Log10(Math.Pow(10,3.4)) ' Sets l_exp to 3.4

See Also

Math Class

Math Class

157

Math.Max Method

Returns the larger of two values.

...Math.Max(value_1, value_2)

Prerequisites

None

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the larger of two numerical values, value_1 or value_2.

Examples

Dim bigger As Single
bigger = Math.Max(-5, -4.9) ' Sets bigger to –4.9
bigger = Math.Max(-20/-4, 3) ' Sets bigger to 5
bigger = Math.Max(Math.Min(100, 33), 55) ' Sets bigger to 55

See Also

Math Class

GPL Dictionary Pages

158

Math.Min Method

Returns the smaller of two values.

...Math.Min(value_1, value_2)

Prerequisites

None

Parameters

value_1

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

value_2

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the smaller of two numerical values, value_1 or value_2.

Examples

Dim smaller As Single
smaller = Math.Min(-5, -4.9) ' Sets smaller to –5
smaller = Math.Min(-20/-4, 3) ' Sets smaller to 3
smaller = Math.Min(Math.Max(100, 33), 55)' Sets smaller to 55

See Also

Math Class

Math Class

159

Math.PI Method

Returns the constant ð.

...Math.PI

Prerequisites

None

Parameters

None

Remarks

Returns the value of ð, 3.14159265358979323846.

Examples

Dim to_deg, to_rad As Double
to_deg = 180/Math.PI ' Conversion factor from radians to degrees
to_rad = Math.PI/180 ' Conversion factor from degrees to radians

See Also

Math Class

GPL Dictionary Pages

160

Math.Pow Method

Returns a specified base value raised to a specified power.

...Math.Pow(base, exponent)

Prerequisites

None

Parameters

base

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

exponent

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the value of base raised to the exponent power (i.e. base^exponent). The base
cannot be negative if the exponent is a fractional value. Also, the base cannot be zero if
the exponent is less than or equal to zero.

Examples

Dim p_val As Single
p_val = Math.Pow(2, 3) ' Sets p_val to 8
p_val = Math.Pow(3, -2.2) ' Sets p_val to 0.08919
p_val = Math.Pow(Math.E, Math.Log(17.1))' Sets p_val to 17.1

See Also

Math Class

Math Class

161

Math.Sign Method

Returns a number that indicates the sign of a specified value.

...Math.Sign (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns a 1.0 if the value is greater than zero, 0 if the value is equal to zero, otherwise –
1.0 to indicate that the value is negative.

Examples

Dim v_sign As Single, int_v_sign As Integer
v_sign = Math.Sign(-21.2/(-2.3)) ' Sets v_sign equal to 1.0
int_v_sign = Math.Sign(-7.2) ' Sets int_v_sign equal to –1

See Also

Math Class

GPL Dictionary Pages

162

Math.Sin Method

Returns the sine of a specified angle

...Math.Sin(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the sine of the angle that is specified in radians. The result of this method ranges
from –1 to +1.

To convert degrees to radians, multiply the degrees times ð/180.

Examples

Dim sin_val As Single
sin_val = Math.Sin(-Math.PI/2) ' Sets sin_val to -1
sin_val = Math.Sin(20.5*Math.PI) ' Sets sin_val to 1
sin_val = Math.Sin(45*Math.PI/180) ' Sets sin_val to 0.7071

See Also

Math Class

Math Class

163

Math.Sinh Method

Returns the hyperbolic sine of a specified angle.

...Math.Sinh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the hyperbolic sine of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times ð/180.

See Also

Math Class

GPL Dictionary Pages

164

Math.Sqrt Method

Returns the square root of a value.

...Math.Sqrt (value)

Prerequisites

None

Parameters

value

A required expression that evaluates to any numerical data type, e.g.
Integer, Single, Double.

Remarks

Returns the square root of any positive number as a double precision value.

Examples

Dim root As Single, int_root As Integer
root = Math.Sqrt(1.44) ' Sets root equal to 1.2
int_root = Math.Sqrt(1.69) ' Sets int_root equal to 1

See Also

Math Class

Math Class

165

Math.Tan Method

Returns the tangent of a specified angle.

...Math.Tan(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the tangent of the angle that is specified in radians. Since the returned value will
be extremely large as the angle approaches ð/2 or -ð/2, it is normally desirable to use
the Math.Sin and Math.Cos methods in place of this operation.

To convert degrees to radians, multiply the degrees times ð/180.

Examples

Dim tan_val As Single
tan_val = Math.Tan(0) ' Sets tan_val to 0
tan_val = Math.Tan(Math.PI/4) ' Sets tan_val to 1
tan_val = Math.Tan(-45*Math.PI/180)' Sets tan_val to -1

See Also

Math Class

GPL Dictionary Pages

166

Math.Tanh Method

Returns the hyperbolic tangent of a specified angle.

...Math.Tanh(angle)

Prerequisites

None

Parameters

angle

A required expression that evaluates to an angle in units of radians. This
angle is not limited to values between -ð and +ð and can be arbitrarily
large.

Remarks

Returns the hyperbolic tangent of the angle that is specified in radians.

To convert degrees to radians, multiply the degrees times ð/180.

See Also

Math Class

167

Modbus Class
Modbus Class Summary

The Modbus Class in GPL supports master access to MODBUS/TCP slave devices
connected to the local Ethernet network. MODBUS/TCP is an "open" de facto standard
protocol that is widely used in the industrial manufacturing environment to communicate
between intelligent devices. It has been implemented by hundreds of vendors on
thousands of different products to communicate digital and analog I/O and register data
between devices.

The tables below briefly summarize the properties and methods for this Class, which are
described in greater detail in the following sections.

Modbus Class Member Type Description

New Modbus Constructor
Method

Creates an object for a MODBUS
connection and specifies the IP
address.

modbus_obj.Close Method
Closes any connections associated
with this object.

modbus_obj.ReadCoils Method Reads one or more outputs.
modbus_obj.ReadDeviceId Method Reads the device ID strings.
modbus_obj.ReadDiscreteInputs Method Reads one or more inputs.

modbus_obj.ReadHoldingRegisters Method
Reads one or more holding
registers.

modbus_obj.ReadInputRegisters Method Reads one or more input registers.

modbus_obj.Timeout Get/Set
Property

Gets or sets the timeout, in
milliseconds, that this connection
will wait for a reply before throwing
an exception.

modbus_obj.WriteMultipleCoils Method Writes multiple outputs.
modbus_obj.WriteMultipleRegisters Method Writes multiple holding registers.
modbus_obj.WriteSingleCoil Method Writes a single output.
modbus_obj.WriteSingleRegister Method Writes a single holding register.

GPL Dictionary Pages

168

modbus_object.Close Method

Closes the network connection associated with a Modbus object.

modbus_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.

If no Modbus connection is active, no error occurs.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
 …
mb.Close()

See Also

Modbus Class

Modbus Class

169

modbus_object.ReadCoils Method

Reads one or more outputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadCoils(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil to
be read.

number

A required Integer expression that defines the number of coils to be
read.

value_array

A required Boolean array that receives the output values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Coils request (function 1).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadCoils(1, 16, bool) ' Read 16 outputs

See Also

Modbus Class | modbus_object.WriteMultipleCoils | modbus_object.WriteSingleCoil

GPL Dictionary Pages

170

modbus_object.ReadDeviceID Method

Reads device identification information from a MODBUS slave and returns as a String
value.

... modbus_object.ReadDeviceId(object_id)

Prerequisites

None

Parameters

object_id

A required Integer expression that evaluates to a number from 0 to 255
that selects the identification information to be returned.

Remarks

This method issues a MODBUS Read Device Identification request (MEI-type 13) using
the Encapsulated Interface Transport (function 43) to retrieve identification information
from the slave. The Read Device ID code is always set to 1.

The object_id parameter selects the identification information to be returned. Some
standard values are:

Object ID Description

0 Vendor name
1 Product code
2 Major and Minor Revision

Consult the MODBUS/TCP standard for the meaning of other object_id values.

Not all MODBUS devices support this function. The String value returned by this method
depends on the particular device being referenced. Consult the manual for your
MODBUS slave device for details.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim id As String
id = mb.ReadDeviceId(0) ' Read vendor name

Modbus Class

171

See Also

Modbus Class

GPL Dictionary Pages

172

modbus_object.ReadDiscreteInputs Method

Reads one or more inputs from a MODBUS slave and returns the values in a Boolean
array.

modbus_object.ReadDiscreteInputs(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first input
to be read.

number

A required Integer expression that defines the number of inputs to be
read.

value_array

A required Boolean array that receives the input values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Discrete Inputs request (function 2).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool() As Boolean
mb.ReadDiscreteInputs(1, 16, bool) ' Read 16 inputs

See Also

Modbus Class | modbus_object.ReadInputRegisters

Modbus Class

173

modbus_object.ReadHoldingRegisters Method

Reads one or more holding registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadHoldingRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Holding Registers request (function 3).

Each holding register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadHoldingRegisters(1, 16, regs) ' Read 16 values

See Also

GPL Dictionary Pages

174

Modbus Class | modbus_object.ReadInputRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

Modbus Class

175

modbus_object.ReadInputRegisters Method

Reads one or more input registers from a MODBUS slave and returns the values in an
Integer array.

modbus_object.ReadInputRegisters(start, number, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
register to be read.

number

A required Integer expression that defines the number of registers to be
read.

value_array

A required Integer array that receives the register values. The length of
the array is changed to reflect the number of values read.

Remarks

This method issues a MODBUS/TCP Read Input Registers request (function 4).

Each input register contains a 16-bit unsigned integer value, from 0 to 65535.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim regs() As Integer
mb.ReadInputRegisters(1, 16, regs) ' Read 16 values

See Also

GPL Dictionary Pages

176

Modbus Class | modbus_object.ReadHoldingRegisters| modbus_object.WriteMultipleRegisters |
modbus_object.WriteSingleRegister

Modbus Class

177

modbus_object.Timeout Property

Sets or gets the timeout period, in milliseconds, that GPL waits for a response from a
MODBUS slave.

modbus_object.Timeout = <timeout>
-or-
... modbus_object.Timeout

Prerequisites

None

Parameters

None

Remarks

The property allows you to set the timeout period for all Modbus methods that perform
I/O with the MODBUS slave.

If this time is exceeded, the method throws an exception. If the timeout period is set to 0,
the timeout is disabled and a request may wait indefinitely.

Each modbus_object has an independent timeout value.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.Timeout = 2000 ' Timeout in 2 seconds

See Also

Modbus Class

GPL Dictionary Pages

178

modbus_object.WriteMultipleCoils Method

Writes one or more outputs to a MODBUS slave.

modbus_object.WriteMultipleCoils(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first coil to
be written.

value_array

A required Boolean array that contains the output values to be written.
The length of the array determines the number of coils written.

Remarks

This method issues a MODBUS/TCP Write Multiple Coils request (function 15).

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim bool(15) As Boolean ' Array length is 16
bool(0) = True ' First output set, rest clear
mb.WriteMultipleCoils(1, bool) ' Write 16 outputs

See Also

Modbus Class | modbus_object.WriteSingleCoil

Modbus Class

179

modbus_object.WriteMultipleRegisters Method

Writes one or more holding register values to a MODBUS slave.

modbus_object.WriteMultipleRegisters(start, value_array)

Prerequisites

None

Parameters

start

A required Integer expression that specifies the number of the first
holding register to be written.

value_array

A required Integer array that contains the register values to be written.
The length of the array determines the number of registers written.

Remarks

This method issues a MODBUS/TCP Write Multiple Registers request (function 16).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of values in
value_array are used. No error is reported if values are too big to fit in 16 bits.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
Dim value() As Integer
Redim value(7) ' Set array length to 8
value(0) = 111 ' First reg is 111, rest are zero
mb.WriteMultipleRegisters(1, value) ' Write 8 registers

See Also

Modbus Class | modbus_object.WriteSingleRegister

GPL Dictionary Pages

180

modbus_object.WriteSingleCoil Method

Writes a single output to a MODBUS slave.

modbus_object.WriteSingleCoil(coil, value)

Prerequisites

None

Parameters

coil

A required Integer expression that specifies the number of the coil to be
written.

value

A required Boolean expression that determines the output to be written.
Any non-zero value is considered True.

Remarks

This method issues a MODBUS/TCP Write Single Coil request (function 5).

If more than one coil is to be changed, it is much more efficient to use the
WriteMultipleCoils method than multiple WriteSingleCoil methods.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleCoil(1, True) ' Turn on coil 1
mb.WriteSingleCoil(2, False) ' Turn off coil 2

See Also

Modbus Class | modbus_object.WriteMultipleCoils

Modbus Class

181

modbus_object.WriteSingleRegister Method

Writes a single holding register value to a MODBUS slave.

modbus_object.WriteSingleRegister(register, value)

Prerequisites

None

Parameters

register

A required Integer expression that specifies the number of the holding
register to be written.

value

A required Integer expression that determines the output to be written to
the holding register.

Remarks

This method issues a MODBUS/TCP Write Single Register request (function 6).

The holding registers are 16-bit unsigned integer values. Only the low 16-bits of value are
used. No error is reported if value is too big to fit in 16 bits.

If more than one register is to be changed, it is much more efficient to use the
WriteMultipleRegisters method than multiple WriteSingleRegister methods.

A new connection to the MODBUS slave is made if none currently exists.

If any network errors occur, this method throws an exception.

Examples

Dim ep As New IPEndPoint("192.168.0.150")
Dim mb As New Modbus(ep)
mb.WriteSingleRegister(1, 123)

See Also

Modbus Class | modbus_object.WriteMultipleRegisters

182

Move Class
Move Class Summary

The following pages provide detailed information on the methods of the Move Class.
This class provides the means for issuing motion commands to a robot.

The GPL system supports position, velocity, and torque-controlled motions. In the
standard case of position-controlled motions, a Move method requires two arguments: a
motion destination and a motion performance specification. Typically, a Location Object
specifies the destination and a Profile Object defines the performance parameters. The
Location can specify the destination in either Cartesian or joint coordinates and includes
clearance position information that is utilized by selected Move methods. The Profile
specifies the type of path to follow, i.e. straight-line or joint interpolated and how fast the
robot is to move.

As an ease-of-use feature, several Move methods are provided for defining the
destination of a motion. For example, methods are provided for specifying if the robot is
to move directly to a destination, move to the clearance position of a destination, move
relative to the previous destination, or move a single axis.

The table below briefly summarized the methods that are described in greater detail in
the following sections.

Member Type Description

Move.Approach Method
Moves to the clearance position for a
specified Location.

Move.Arc Method
Moves the tool tip of the robot along an arc
path defined by three Locations.

Move.Circle Method
Moves the tool tip of the robot around a
complete circle defined by three Locations.

Move.Delay Method
Pauses execution of motions for a specified
period of time, in seconds.

Move.Extra Method
Moves extra, independent axes during the
next motion to a Cartesian Location.

Move.ForceOverlap Method

Bypasses the system's normal motion
blending features and explicitly defines how
the execution of two sequential motions are
to be overlapped.

Move.Loc Method
Basic instruction to move to a specified
destination Location.

Move.OneAxis Method
Convenience method to move a single axis of
a robot.

Move.Rel Method
Moves to a Location that is relative to the
final position and orientation of the previous
motion.

Move.SetJogCommand Method
Sets or changes the specific mode, axis and
speed during jog (manual) control mode.

Move.SetSpeeds Method
Sets new target speeds and accelerations for
all axes during velocity control mode.

Move.SetTorques Method Sets new target torque output levels for all

Move Class

183

motors in torque control mode.

Move.StartJogMode Method
Initiates execution of jog (manual) control
mode.

Move.StartTorqueCntrl Method
Initiates execution of torque control mode for
one or more motors.

Move.StartVelocityCntrl Method
Switches all axes of a robot to velocity control
mode in place of position control mode.

Move.StopSpecialModes Method
Terminates execution of any active special
trajectory control modes.

Move.Trigger Method
Primes the system to automatically assert a
digital output signal at a prescribed trigger
position during the next motion.

Move.WaitForEOM Method
Pauses GPL program execution until the
current motion is completed.

GPL Dictionary Pages

184

Move.Approach Method

Moves the robot in a position-controlled motion to the clearance position for a specified
Location.

Move.Approach (location_1, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated, position-
controlled motion to a clearance position for a specified Location.

In many cases, as the robot moves towards a part position or is being retracted from a
part position, it must first move through an intermediate clearance position. For example,
when picking up a part, it is often necessary to position the robot’s gripper directly over
the part before moving down to pick it up. Likewise, after gripping a part, it is often
necessary to retract the robot’s end effector and the part in order to clear other parts or to
avoid scrapping the part along it’s supporting surface.

Since this is such a common operation, all Location Objects contain information on their
required clearance position. The Approach method automatically makes use of this
clearance data to compute an intermediate “approach position” that is taken as the
destination for the Approach method’s motion.

Specifically, each Location contains a ZClearance distance and a ZWorld Boolean flag.
The ZClearance property specifies the Z-axis offset distance for the approach position in
millimeters. If the ZWorld property is True, the clearance position is interpreted as being
directly above (or below) the “total position” of the Location in the world coordinate

Move Class

185

system at the Z value specified by ZClearance. For example, if the “total position” of a
Location is at an X, Y, Z value of (10,20,30) and ZClearance is 52.3 and ZWorld is
True, the approach position would be (10,20,52.3).

A world Z clearance position is often used if the robot is loading or unloading a box and
the robot must clear the edge of the box independent of how far into the box it must
reach.

If the ZWorld property of a Location is False, the clearance position is a relative
distance along the negative Z-axis of the robot’s tool. This clearance distance
corresponds to having the robot retract an incremental distance along the major axis of
its tool or gripper. For example, if the “total position” of a Location is at an X, Y, Z value
of (10,20,30) and ZClearance is 52.3 and ZWorld is False and the robot’s tool is pointed
along the positive world X-axis, the approach position would be (-42.3,20,30).

A tool Z clearance position is typically utilized if the robot is tending a number of
machines and you always wish to retract the gripper a fixed distance from each machine
before moving to the next Location.

By making use of GPL’s robot kinematics option, approach specifications can be
automatically applied to both Cartesian and Angles Location Objects.

Once the Approach method computes the desired motion destination, the motion
execution is identical to the Move.Loc method. The motion can be a Straight-line or joint
interpolated motion, can be blended with the previous and the next motions as desired,
and the performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile initialized to default values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
loc1.ZClearance = 10 ' Require 10 mm clearance in Tool
Move.Approach(loc1,prof1) ' Move to clearance position
Move.Loc(loc1, prof1) ' Move to loc1 using prof1

See Also

Location Class | Move Class | Move.Loc | Move.Rel | Profile Class

GPL Dictionary Pages

186

Move.Arc Method

Moves the robot's tool tip in a circular arc defined by three Location values.

Move.Arc (location_1, location_2, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows a circular arc path. The arc is
defined by the XYZ values of the final position of the previous motion and location_1 and
location_2. The performance parameters for the motion are defined by the Profile
Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

Move Class

187

The circular arc begins at the final "total XYZ position" of the previous motion, goes
through the "total" XYZ position of location_1 and terminates at the "total" XYZ position of
location_2. The "total position" of location_1 and location_2 are computed as the results
of evaluating each Location's PosWrtRef value relative to the “total position” of their
respective reference frames, if any. If a Location is specified as an Angles type, its XYZ
position is computed using the kinematic model for the attached robot.

If profile_1 has its InRange property set to zero or a positive value, the system will bring
the robot to a stop at location_2. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated
or other circular interpolated motions.

If the previous motion is still in process when the Move.Arc instruction is executed, the
Move.Arc instruction will temporarily suspend execution of its thread. At the conclusion
of the previous motion or as soon as the new Arc motion starts to be blended with the
previous motion, the thread will automatically continue execution at the next instruction in
the GPL procedure.

The following are special notes regarding the use of the Arc method.

 The circular arc can be defined in any arbitrary orientation and need not lie in an
cardinal plane.

 The XYZ value of location_1 need not be halfway between the starting and
ending positions of the arc although values closer to the mid point will more
accurately define the plane of the arc.

 If the three XYZ points that define the arc lie in a straight-line, the Arc method is
automatically converted to a Cartesian straight-line motion to location_2.

 When blending two Arc motions, the s-curve AccelRamp and DecelRamp
should be set to 0 and the Accel and Decel properties should be set high to
ensure that the path tracks the circular path as closely as possible.

 As with straight-line motions, the orientation of the tool of the robot is smoothly
rotated from the final orientation of the previous motion to the orientation of the
final position, location_2. The specific rotation method is a function of the
kinematic module being utilized.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location
Dim p2 As New Location
Dim p3 As New Location
Dim p4 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Define two semi-circles
p1.XYZ(200,100,-100,0,180,0) ' that form an "S"
p2.XYZ(300,200,-100,0,180,0)
p3.XYZ(400,300,-100,0,180,0)
p4.XYZ(500,200,-100,0,180,0)

Move.Loc(p0,pf_start) ' Move to start position
Move.Arc(p1,p2,pf_on_path) ' Follow first semi-circle
Move.Arc(p3,p4,pf_on_path) ' Follow second semi-circle
Move.WaitForEOM ' Pause thread until motion done

See Also

GPL Dictionary Pages

188

Location Class | Move Class | Move.Circle | Move.Loc | Profile Class

Move Class

189

Move.Circle Method

Moves the robot's tool tip in a complete circle defined by three Location values.

Move.Circle (location_1, location_2, profile_1)

Prerequisites


 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

location_2

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. The Straight property that specifies a Cartesian straight-
line or a joint interpolated motion is ignored since the motion is always
performed in Cartesian coordinates.

Remarks

This method simultaneously moves all of the axes of a robot in a coordinated, position
controlled motion such that the robot's tool tip follows an arc path around a complete
circle. The circle is defined by the XYZ values of the final position of the previous motion
and location_1 and location_2. The performance parameters for the motion are defined
by the Profile Object, profile_1 (e.g. Speed, Accel, Decel, AccelRamp, DecelRamp).

GPL Dictionary Pages

190

The circle begins at the final "total XYZ position" of the previous motion, goes through the
"total" XYZ position of location_1 and the "total" XYZ position of location_2 and
terminates at the starting position. The "total positions" of location_1 and location_2 are
computed as the results of evaluating each Location's PosWrtRef value relative to the
“total position” of their respective reference frames, if any. If a Location is specified as
an Angles type, its XYZ position is computed using the kinematic model for the attached
robot.

If profile_1 has its InRange property set to zero or a positive value, the system will bring
the robot to a stop at the final position. If this property is negative and the next motion
statement is executed before this motion reaches its destination, GPL will attempt to
blend the two motions together into a “continuous path”. Circular interpolated motions
can be blended with any of the motion types, i.e. Cartesian straight-line, joint interpolated
or other circular interpolated motions.

If the previous motion is still in process when the Move.Circle instruction is executed, the
Move.Circle instruction will temporarily suspend execution of its thread. At the
conclusion of the previous motion or as soon as the new Circle motion starts to be
blended with the previous motion, the thread will automatically continue execution at the
next instruction in the GPL procedure.

The following are special notes regarding the use of the Circle method.


 The circle can be defined in any arbitrary orientation and need not lie

in an cardinal plane.
 The XYZ values of location_1 and location_2 need not be equal

distance between the starting and ending positions of the circle
although values closer to 120 degrees apart will increase the accuracy
of the plane of the circle.

 If the three XYZ points that define the circle lie in a straight-line, the
Circle method motion is automatically converted to a short move to
nowhere.

 When blending a Circle motion with another motion, the s-curve
AccelRamp and DecelRamp should be set to 0 and the Accel and
Decel properties should be set high to ensure that the path tracks the
circular path as closely as possible.

 During the circular motion, the orientation of the tool is held constant.

Examples

Dim p0 As New Location ' Create location objects
Dim p1 As New Location

Move Class

191

Dim p2 As New Location

p0.XYZ(100,200,-100,0,180,0) ' Center on (200,200), radius 100
p1.XYZ(200,300,-100,0,180,0)
p2.XYZ(200,100,-100,0,180,0)

Move.Loc(p0,pf_start) ' Move to start position
Move.Circle(p1,p2,pf_on_path) ' Move in a circle
Move.WaitForEOM ' Pause thread until motion done

See Also

Location Class | Move Class | Move.Arc | Move.Loc | Profile Class

GPL Dictionary Pages

192

Move.Delay Method

Pauses execution of a robot’s motions for a specified period of time, in seconds.

Move.Delay (seconds)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

seconds

A required numeric expression that specifies the number of seconds to
delay any further robot motions, interpreted as a Double value.

Remarks

This method delays any further motions for the attached robot for the specified number of
seconds. This delay starts immediately if the robot is not moving or starts at the
completion of any in-process motions if the robot is moving. Unlike other methods that
simply suspend execution of a thread, this delay is synchronized with the movement of
the robot. So, it is very useful of inserting process delays in order to allow other
equipment to complete their operations before the robot moves to its next step. For
example, this method can be used after the robot has come to a complete halt to pick up
a part, to insert a fixed delay to allow the robot’s gripper to close and engage the part.

Another advantage of this method is that it is implemented like a command to “move to
the current position for a fixed amount of time”. This means that as soon as the delay
period begins, execution of the thread continues. This allows the thread to monitor other
activities or plan the next motion. Also, since the Delay method behaves like any other
motion, the Delay can be prematurely terminated by a RapidDecel command.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.Delay(0.2) ' Delay for .2 seconds after we reach loc1

See Also

Move Class | Move.WaitForEOM

Move Class

193

Move.Extra Method

Move extra, independent axes during the next motion to a Cartesian Location.

Move.Extra (axis_1_position, axis_2_position)

Prerequisites

 High power to the robot must be enabled.
 The robot must be Attached by the thread.

Parameters

axis_1_position

A required numeric expression that specifies the new position of the first
extra axis as an absolute position in units of either millimeters or degrees
as appropriate.

axis_2_position

An optional numeric expression that specifies the new position of the
second extra axis as an absolute position in units of either millimeters or
degrees as appropriate.

Remarks

Selected kinematic modules include extra, independent axes that are physically part of
the robot but that do not logically factor into the calculation of the Cartesian position and
orientation of the robot. For example, the "Dual RPR Robot" and the "XYZ Plus Extra
Axis Robot" both include an extra axis that does not affect the Cartesian location of the
robot.

For these types of robots, if a motion instruction is executed to a Cartesian Location
value, there is no information available to define where the extra axis is to be moved. So,
in general, the extra axis will remain in its current position during such a motion.

To address this need, the Move.Extra method can be executed prior to the execution of
a motion to a Cartesian Location. During the motion, any extra axes will be moved to
the positions specified by the Move.Extra method simultaneously with the other axes of
the robot. If the next motion is not to a Cartesian Location, the information specified in
the Move.Extra method is ignored.

As an alternative to using the Move.Extra method, a motion specified to an Angles
Location will move all of the axes of the robot including the extra axis. However, in this
case, the benefits of utilizing a Cartesian Location will be lost.

Please see the documentation for your specific Robot Kinematic Module to determine if
this instruction has any affect.

GPL Dictionary Pages

194

Examples

Dim pf1 As New Profile ' Create new profile set to default values
Move.Extra(20) ' Move extra axis to 20 during next motion
Move.Loc(Location.XYZValue(300,0,100),pf1) ' Move robot and extra axis

See Also

Move Class | Move.Loc | Move.Rel

Move Class

195

Move.ForceOverlap Method

Bypasses the system's normal motion blending features and explicitly defines how the
execution of two sequential motions are to be overlapped.

Move.ForceOverlap (mode, criterion)

Prerequisites

 High power to the robot must be enabled.
 The robot must be Attached by the thread.

Parameters

mode

A required arithmetic expression that defines how the overlapping is
specified and the criterion is interpreted. Currently, this value must be
0 and specifies that the criterion is a percentage of overlap.

criterion

A required arithmetic expression that defines how much the next motion
is to be overlapped with the currently executing motion. The
interpretation of this parameter is a function of the mode.

Remarks

In most applications, the system automatically optimizes the execution of sequential
motions by blending (overlapping) the deceleration of the previous motion with the
acceleration of the next motion. For example, if a motion in the X direction is split into
two separate motion instructions and the robot is instructed not to stop between the
motions, the system will automatically blend the deceleration of the first segment with the
acceleration of the second segment such that the two motions will appear as though they
were a single continuous motion. This blending can significantly improve the
performance of a robot since the time required for accelerating and decelerating
adversely effects cycle time.

When the system automatically computes the amount by which sequential motions are
blended, it takes into account the maximum allowable acceleration and deceleration of
the robot. This permits the cycle time to be optimized without exceeding the capabilities
of the mechanical system.

However, in some special cases, it is desirable to override the system's standard
blending computations by using the ForceOverlap method to explicitly define how much
two motions are to be overlapped.

GPL Dictionary Pages

196

This method has the following benefits as compared to automatic blending:

 Allows all segments of the current motion to be overlapped with the next motion,
not just the current motion's deceleration and the next motion's acceleration
segments. This permits a much greater overlapping of the two motions.

 Provides explicit overlapping specification in cases where the automatic blending
may not result in optimal performance.

 This method has the following disadvantages as compared to automatic blending:

 No checking is performed to ensure that the maximum acceleration and
deceleration capabilities of the robot are not exceeded.

 The system's blending algorithms automatically reduce the deceleration of the
current motion and the acceleration of the next motion when this will not
adversely effect cycle time to increase the smoothness of the motion transition.

 The ForceOverlap method places more burden on the application programmer
for optimizing motion cycle time.

The interpretation of the mode and criterion parameters are described in the following
table.

mode criterion Resulting Overlap

0 % (0-100)

% of the total execution time of the next motion that is to be
overlapped with the currently executing motion. A value of
0 indicates that the two motions are not overlapped. A
value of 100 indicates that all of the next motion is to be
overlapped with the currently executing motion if possible.

The motion overlap generated by this method is subject to the following limitations.

 Since the overlap is with respect to the currently executing motion, the next
motion will never be started prior to the execution of the current motion.

 The overlap is limited to ensure that the next motion never terminates before the
end of the currently executing motion.

 If the current motion is defined to stop, i.e. has a Profile Inrange parameter of 0
or greater than 0, no overlapping will be performed.

The following simplified drawings graphically illustrate how the overlapping is performed. In the
first set of drawings, the current motion is shorter than the next motion. In the second set of
drawings, the current motion is longer than the next motion.

Move Class

197

Note that when the next motion is longer than the current motion, the overlap can be
extended to almost the start of the current motion. If the next motion is shorter than the
current motion, the next motion will always be started sufficiently after the start of the
current motion to ensure that the next motion does not terminate before the current
motion.

By comparison, the following picture illustrates the amount of overlapping that can be
expected as a result of the system's automatic blending algorithm. The automatic
blending is very easy to use and ensures that the robot's dynamic capabilities are not
exceeded. However, the overlapping is generally limited to the deceleration segment of
the previous motion and the acceleration segment of the next motion.

Examples

Dim pf1 As New Profile
Robot.Attached = 1 ' Get control of robot #1
pf1.Inrange = -1 ' Don't stop at end of motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in X-tool coordinates
Move.ForceOverlap(0, 50) ' Overlap 50% of the next motion's time
Move.Rel(Location.XYZValue(0,10), pf1) ' Move 10 mm in Y-tool coordinates
Robot.Attached = 0 ' Release control of robot

See Also

Move Class

GPL Dictionary Pages

198

Move.Loc Method

Basic method for moving the robot to a specified destination in a position-controlled
motion.

Move.Loc (location_1, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This is the basic method for simultaneously moving all of the axes of a robot in a
coordinated, position controlled motion to a destination specified by a Location Object,
location_1, using performance parameters defined by a Profile Object, profile_1 (e.g.
Speed, Accel, Decel, AccelRamp, DecelRamp).

The destination of the motion will be the “total position” defined by location_1. For the
various forms for the Location Object, the motion destination will be computed as
follows:

 If location_1 is a Cartesian Location with a reference frame, the “total position”
is computed as the position and orientation that is a result of evaluating
location_1’s PosWrtRef value relative to the “total position” of the reference
frame.

 If location_1 is a Cartesian Location without a reference frame, location_1’s
PosWrtRef value is interpreted as the absolute coordinates for the destination.

 Otherwise, location_1 is an Angles Location and the motion destination will be
the axes positions specified by location_1.

If profile_1 specifies a Straight-line motion, the robot will move along a straight path in
Cartesian space. Otherwise, a joint-interpolated motion will be generated. If profile_1 has

Move Class

199

its InRange property set to zero or a positive value, the system will bring the robot to a
stop at location_1. If this property is negative and the next motion statement is executed
before this motion reaches its destination, GPL will attempt to blend the two motions
together into a “continuous path”.

If the previous motion is still in process when the Move.Loc instruction is executed, the
Move.Loc instruction will temporarily suspend execution of its thread. At the conclusion
of the previous motion or as soon as the new motion starts to be blended with the
previous motion, the thread will automatically continue execution at the next instruction in
the GPL procedure.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1

See Also

Location Class | Move Class | Move.Approach | Move.Arc | Move.Extra | Move.Rel | Profile Class

GPL Dictionary Pages

200

Move.OneAxis Method

Convenience method to move a single axis of a robot.

Move.OneAxis (axis, axis_position, relative_flag, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

axis

A required numeric expression that specifies the number of the robot’s
axis that is to be moved, 1-n.

axis_position

A required numeric expression that specifies the new position of the axis
as either an absolute position or a relative position, in units of either
millimeters or degrees as appropriate.

relative_flag

A required numeric expression that is interpreted as a Boolean that
indicates if the axis_position is an absolute axis position (False) or a
relative value (True).

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method is primarily a convenience and diagnostic function that moves a single axis
of the Attached robot. If the relative_flag is True, the new axis position is computed by
adding the axis_position value to the final axis position of the previous motion. Otherwise,
the axis_position is taken as the new absolute position for the axis.

When this motion is generated, the positions of all of the other axes of the robot remain
unchanged.

Once the OneAxis method computes the desired position for each axis, the motion
execution is identical to the Move.Loc method except that Straight-line motions are not

Move Class

201

permitted. However, the motion can be blended with the previous and the next motions
as desired, and the performance parameters are defined by profile_1 (e.g. Speed, Accel,
Decel, AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Move.OneAxis(1,20,True,prof1) ' Increment axis 1 by 20 mm or deg

See Also

Move Class | Move.Loc | Move.Rel

GPL Dictionary Pages

202

Move.Rel Method

Moves the robot in a position-controlled motion to a Location that is relative to the final
position and orientation of the previous motion.

Move.Rel (location_1, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

location_1

A required Location Object or an expression that evaluates to a
Location Object value. Can be either a Cartesian or an Angles type
value.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. Can specify either Cartesian straight-line or joint
interpolated motions.

Remarks

This method simultaneously moves all of the axes of the robot in a coordinated, position
controlled motion to a destination specified by the “total position” of location_1, which is
interpreted as an incremental change relative to the final position and orientation of the
previous motion. If location_1 is a Cartesian Location, the “total position” of location_1 is
evaluated relative to the final Cartesian position and orientation of the previous motion. If
location_1 is a Angles Location, the motion’s destination is computed by adding
location_1’s set of angles to the final angles of the previous motion.

Note, that this motion is relative to the actual final position and orientation of the previous
motion and not the planned destination of the previous motion (Robot.Dest,
Robot.DestAngles). The planned destination remains the same even if the motion
prematurely terminates execution. This was designed to allow a motion to be retried.
However, the actual final position and orientation is modified by a Soft E-Stop, a Hard E-
Stop, a RapidDecel command or other conditions. So, the Rel method is designed to
allow a program to do an incremental motion from wherever the robot actually stopped.

For Cartesian Locations, it should be keep in mind that the incremental motion is
performed in the tool coordinate system of the robot. For example, a positive incremental
Z motion will not necessarily move up vertically in the world coordinate system. It will
move along the Z-axis of the robot’s end effector.

Move Class

203

Once the Rel method computes the desired motion destination, the motion execution is
identical to the Move.Loc method. The motion can be a Straight-line or joint interpolated
motion, can be blended with the previous and the next motions as desired, and the
performance parameters are defined by profile_1 (e.g. Speed, Accel, Decel,
AccelRamp, DecelRamp, InRange).

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Dim loc1 As New Location ' Create new location value
loc1.XYZ(10,20,30,0,180,20) ' Define position to move to
Move.Loc(loc1, prof1) ' Move to loc1 using prof1
loc1.XYZ(10) ' Define incremental motion in X
Move.Rel(loc1, prof1) ' Move 10 mm in Tool X, not World

See Also

Location Class | Move Class | Move.Approach | Move.Extra | Move.Loc | Profile Class

GPL Dictionary Pages

204

Move.SetJogCommand Method

Sets or changes the specific mode, axis and speed during jog (manual) control mode.

Move.SetJogComand (jog_mode, jog_axis, jog_speed)

Prerequisites

 High power to the robot must be enabled.
 The robot does not need to be homed.
 The robot must be Attached by the thread.
 The robot must be in jog control mode.

Parameters

jog_mode

A required expression that evaluates to an Integer value. This value
specifies the manual control mode that should now be in effect.

jog_axis

A required expression that evaluates to an Integer value. This defines
the robot or Cartesian axis that is to be moved under manual control.

jog_speed

A required expression that evaluates to a percentage value between
+100 and -100. This specifies the target speed and direction for the
manual control motion. The system automatically generates a motion
profile to accelerate up to this speed and to decelerate to a stop after the
manual motion is completed.

Remarks

After a robot has been placed into jog (manual) control mode, this method must be
executed to define the manual control mode, the axis to be manually controlled and the
speed at which the axis is to be moved. This method can be executed at any time during
jog control mode and as many times as desired. It simply posts the parameters to the
trajectory generator for execution. The trajectory generator automatically takes care of
smoothly transitioning between modes and target speeds.

For example, if the robot is being moved in World manual control mode and a new
command to move in joint manual mode is received, the trajectory generator will
decelerate the World manual mode motion to a stop prior to starting the acceleration up
to the target joint manual mode speed. As another example, if the robot is being moved
in any mode and a new command is posted that changes the target speed, the trajectory
generator will smoothly accelerate or decelerate to achieve the new speed.

Move Class

205

The interpretation of the parameters to this method are as follows:

Jog_Mode Jog_Axis Jog_Speed Description

0 Ignored. Ignored. Idle, robot not moving.

1
Robot joint
number, 1-n

Joint speed and
direction.

Joint manual control mode. A single robot
axis can be moved. The robot does not need to
be homed. Axes that are out-of-range can be
moved into range.

2

Cartesian axis:
1:X, 2:Y, 3:Z,
4:RX, 5:RY,
6:RZ

Cartesian speed
and direction.

World manual control mode. Translates or
rotates along or about a single world (base)
Cartesian coordinate axis. The robot must be
homed.

3

Cartesian axis:
1:X, 2:Y, 3:Z,
4:RX, 5:RY,
6:RZ

Cartesian speed
and direction.

Tool manual control mode. Translates or
rotates along or about a single tool (gripper)
Cartesian coordinate axis. The robot must be
homed.

4
Robot joint
number, 1-n

Positive values
free the joint and
negative values
lock the joint.

Free manual control mode. Puts any number
of axes into torque control mode to permit the
axes to be manually pushed into position.

For Joint, World and Tool control modes, if the magnitude of the speed is set to 5% or
less, the robot will move a discrete increment and then stop rather than move
continuously. In order to move an additional small increment, the speed must be set to 0
and then to a value of 5% or less. This is very convenient for fine positioning the robot.

WARNING: Any axis commanded to move at greater than 5%
speed will continue to do so until stopped. It is responsibility of the
GPL Project to have suitable safe guards and time outs to ensure
that a motion is terminated when required.

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StartJogMode | Move.StopSpecialModes

GPL Dictionary Pages

206

Move.SetSpeeds Method

Sets new target speeds for all axes of a robot in velocity control mode.

Move.SetSpeeds (speed_array, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.
 The robot must be in velocity control mode.

Parameters

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speed, e.g. 100%_joint_speeds *
max_%_speed_allowed.

profile_1

An optional Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified. If this parameter is not specified, the Profile specified
by the last executed Move.SetSpeeds or Move.StartVelocityCntrl
method will be utilized.

Remarks

After a robot has been placed into velocity control mode, this method can be used to
modify the target speed levels for each axis. This method can be executed at any time
and as many times as desired. It simply posts the desired target speeds to the trajectory
generator. The next time that the trajectory generator executes, the specified speeds will
be taken as the new target values. If this method is executed multiple times before the
trajectory generator executes again, only the last values posted will have an effect.

Examples

Move Class

207

Dim speeds(12) As Double ' All Double speeds will be 0
Dim pf1 As New Profile ' Use default accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode
For ii = 36 To 360 Step 36
 speeds(0) = ii ' New speed value
 Move.SetSpeeds(speeds) ' Ramp axis 1 speed
 Controller.Sleeptick(30) ' Wait a little while
Next ii
Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StartVelocityCntrl | Move.StopSpecialModes

GPL Dictionary Pages

208

Move.SetTorques Method

Sets new target torque output levels for all motors in torque control mode.

Move.SetTorques (torques_array)

Prerequisites

 High power to the robot must be enabled.
 The robot does not need to be homed.
 The robot must be Attached by the thread.
 One or more motors of the robot must be operating in torque control mode.

Parameters

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

After selected motors of a robot have been placed into torque control mode, this method
can be used to modify the target torque levels. This method can be executed at any time
and as many times as desired. It simply posts the desired torque levels to the trajectory
generator. The next time that the trajectory generator executes, the specified torque
levels will be taken as the new target values. If this method is executed multiple times
before the trajectory generator executes again, only the last values posted will have an
effect.

Examples

Dim torques(12) As Double ' All Double torques will be 0
Dim ii, jj As Integer

Robot.Attached = 1 ' Get control of robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to torque mode
For jj = 1 To 10
 For ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value
 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
 Next ii
Next jj
Move.StopSpecialModes ' Terminate torque mode

Move Class

209

Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.StartTorqueCntrl | Move.StopSpecialModes

GPL Dictionary Pages

210

Move.StartJogMode Method

Initiates execution of jog (manual) control mode.

Move.StartJogMode ()

Prerequisites

 High power to the robot must be enabled.
 The robot does not need to be homed.
 The robot must be Attached by the thread.
 This mode is not compatible with torque, velocity or other special control modes.

Parameters

None

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to jog (manual) control mode. This is the mode that is utilized by the Virtual and
Hardware Manual Control Pendants (MCP) to implement joint, world, tool and free
manual control modes. This method and the Move.SetJogCommand method are
provided to permit these same manual modes to be easily implemented by a GPL
Project. For example, these methods can be used by a GPL program to implement
manual control modes via a graphics HMI or a joystick.

When a robot is placed into this mode, it is moved in a manner similar to velocity control
mode in that a specified axis or group of axes are accelerated and moved at a specified
continuous speed until they are instructed to change their speed.

WARNING: Any axis commanded to move will continue to do so
until stopped. So, it is responsibility of the GPL Project to have
suitable safe guards and time outs to ensure that a motion is
terminated when required.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into jog control mode. Once in this mode, the
Move.SetJogCommand method must be executed to set and change the specific
manual mode, axis and motion speed.

When an axis speed is specified, the setting of the "System Test Speed" is ignored to
permit the robot to be moved in a consistent manner when debugging applications.

Move Class

211

To permit the axes of a robot to be moved back into range if they are accidentally moved
beyond their stop limits, joint control mode permits out-of-range axes to be moved back in
range, but not further out-of-range. In addition, the robot does not need to be homed in
order to move the axes in joint control mode to permit it to be manually repositioned.

The robot will remain in jog control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
this mode.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Examples

Robot.Attached = 1 ' Get control of robot #1
Move.StartJogMode() ' Initiate jog control mode
Move.SetJogCommand(3, 3, 50) ' Set tool mode, Z-axis, 50% speed
Thread.Sleep(4000)
Move.SetJogCommand(2, 1, -50) ' Change to world mode, X-axis, -50% speed
Thread.Sleep(4000)
Move.StopSpecialModes ' Terminate jog mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.SetJogCommand | Move.StopSpecialModes

GPL Dictionary Pages

212

Move.StartTorqueCntrl Method

Initiates execution of torque control mode for one or more motors.

Move.StartTorqueCntrl (motor_mask, adc_mask, torques_array)

Prerequisites

 High power to the robot must be enabled.
 The robot does not need to be homed.
 The robot must be Attached by the thread.

Parameters

motor_mask

A required numeric expression that evaluates to a bit mask that specifies
the motors to be placed into torque control mode. The least significant bit
corresponds to the first motor for the attached robot.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single motor whose torque is to be directly controlled by the first ADC
input channel. This value should be zero if no motor is to be ADC
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding motor at its full positive or negative rated motor torque.
Since the peak motor torque can usually be higher than the rated torque,
ADC values greater than +- 1.0 are permitted.

torques_array

A required array of Doubles that contains a torque specification for each
motor of the robot. The first array element (0) corresponds to the torque
value for the robot’s first motor. Array elements for motors that are not
torque controlled are ignored. Each array element is interpreted as a
percentage, where a value of +100 or –100 indicates that the torque
output should be equivalent to the full positive or negative rated motor
torque. Since the peak motor torque can usually be higher than the rated
torque, values greater than +- 100% are permitted.

Remarks

This method places the specified motors into torque control. Motors that are not placed
into torque control mode continue to operate in position control mode and can be moved
by the standard Move Class Methods. Thus, some axes of the robot can continue to
follow a position-controlled path while others can exert a force or can move freely if their
torque output is set to zero.

Move Class

213

If a motor is specified in the adc_mask, that motor’s torque output level is the sum of the
percentage of rated motor torque specified in the torques_array and the value defined by
the ADC input.

When this method is executed, it first waits for any in-process motions to be completed. It
then transitions the specified motors into torque control and sets their initial torque levels
to the values specified in the torques_array. The torque levels can subsequently be
changed by executing a Move.SetTorques method or by a change in the ADC signal.

Since torque control does not close the position loop around a motor, the torque applied
is unaffected by the current setting of the "System Test Speed". This is the speed value
that can be set via the web Operator Control Panel or the "System wide test speed in %"
(DataID 601) database parameter.

The specified motors will remain in torque control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
torque control mode for all motors.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Torque control mode is compatible with both position and velocity control modes.
However, torque control mode can only be initiated when in position control mode.

Examples

Dim torques(12) As Double ' All Double torques will be 0
Dim ii, jj As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartTorqueCntrl(1, 0, torques) ' Set motor 1 to torque mode
For jj = 1 To 10
 For ii = 0 To 100
 Controller.Sleeptick() ' Wait till next trajectory cycle
 torques(0) = ii/10 ' New torque value
 Move.SetTorques(torques) ' Ramp torque from 0% to 10%
 Next ii
Next jj
Move.StopSpecialModes ' Terminate torque mode
Robot.Attached = 0 ' Release control of robot

See Also

Move Class | Move.SetTorques | Move.StopSpecialModes

GPL Dictionary Pages

214

Move.StartVelocityCntrl Method

Switches all axes of a robot from position to velocity control mode.

Move.StartVelocityCntrl (mode, adc_mask, speeds_array, profile_1)

Prerequisites

 High power to the robot must be enabled.
 The robot must be homed.
 The robot must be Attached by the thread.

Parameters

mode

A required numeric expression that evaluates to the mode of velocity
control to be executed. Currently, this parameter is unused and should
be set to 0 for compatibility with future software releases.

adc_mask

A required numeric expression that evaluates to a bit mask that specifies
the single axis whose speed is to be directly controlled by the first ADC
input channel. This value should be zero if no axis is to be ADC
controlled. A scaled ADC reading of +1.0 or –1.0 will drive the
corresponding axis at its full 100% speed.

speeds_array

A required array of Doubles that contains a speed specification for each
axis of the robot. The first array element (0) corresponds to the target
speed for the robot’s first axis. One value must be provided for each axis
of the robot. Each array element is interpreted in units of mm/sec (linear
axes) or deg/sec (rotary axes). These values are limited by the
maximum permitted joint speed, e.g. 100%_joint_speeds *
max_%_speed_allowed.

profile_1

A required Profile Object or an expression that evaluates to a Profile
Object value. This value defines the acceleration, deceleration and
acceleration/deceleration ramp times to be use to change the speed of
each axes. In certain cases, it may not be possible to honor the ramp
times without over-shooting the target velocity, but the acceleration and
deceleration limits are adhered to. For example, this can occur if an axis
is accelerating to a high velocity and suddenly a new, lower velocity
target is specified.

Move Class

215

Remarks

This method switches all of the axes of a robot from the standard position controlled
mode to velocity controlled mode. When in velocity controlled mode, each axis accepts a
target speed as its command rather than a position. The target speeds can be set by this
method or can be updated at any time using the Move.SetSpeeds method. Once each
axis has accelerated, it will continue to rotate at its target speed until the speed is
explicitly changed, velocity control mode is terminated or an error occurs.

As with position control mode, velocity control mode is compatible with torque control
mode. That is, when in velocity control mode, one or more motors can be in torque
control mode. (Note: Motors must be placed into torque control mode when the robot is in
position control mode. After motors are placed into torque control, the position-controlled
joints can then be switched to velocity control mode.)

If an axis is specified in the adc_mask, that axis' target speed is the sum of the
appropriate value in the speeds_array plus the value defined by the ADC input.

When this method is executed, it first waits for any in-process position controlled motions
to be completed. It then transitions all axes into velocity control mode and sets the initial
target speeds to the values specified in the speeds_array. The speed targets can
subsequently be changed by executing a Move.SetSpeeds method or by a change in the
ADC signal.

As a convenience in debugging applications, the velocity control target speed is affected
by the current setting of the "System Test Speed". This is the speed value that can be
set via the web Operator Control Panel or the "System wide test speed in %" (DataID
601) database parameter. In addition, software and hardware limit stop checking is still
performed during this mode of operation. If an axis is to be rotated continuously, motors
can be configured for continuous turn capability assuming that this capability is supported
by the robot's kinematic module.

The robot will remain in velocity control mode until one of the following occurs:

1. The Move.StopSpecialModes method is executed to terminate
velocity control mode.

2. A hardware error or hard E-stop or soft E-stop occurs.
3. A RapidDecel is issued.
4. The robot is detached by the user program either by issuing a

detach command or by halting user program execution for any
reason.

Examples

Dim speeds(12) As Double ' All Double speeds will be 0
Dim pf1 As New Profile ' Use default accel/decel
Dim ii As Integer
Robot.Attached = 1 ' Get control of robot #1
Move.StartVelocityCntrl(0, 0, speeds, pf1) ' Set to velocity control mode
For ii = 36 To 360 Step 36
 speeds(0) = ii ' New speed value
 Move.SetSpeeds(speeds) ' Ramp axis 1 speed
 Controller.Sleeptick(30) ' Wait a little while
Next ii
Move.StopSpecialModes ' Terminate velocity mode
Robot.Attached = 0 ' Release control of robot

GPL Dictionary Pages

216

See Also

Move Class | Move.SetSpeeds | Move.StopSpecialModes | Move.StartTorqueCntrl

Move Class

217

Move.StopSpecialModes Method

Terminates execution of any active special trajectory control modes.

Move.StopSpecialModes

Prerequisites

 High power to the robot must be enabled.
 The robot must be Attached by the thread.

Parameters

None

Remarks

If any special, i.e. non-position control, trajectory modes are in effect, this method
executes the equivalent of a Robot.RapidDecel to immediately decelerate any moving
axes of the attached robot to a stop. At the completion of this operation, all special
trajectory generation modes will be terminated and the robot will be in the standard
position control mode. If no special modes are in effect, this method performs no
operation and does not signal an error.

In particular, the following modes of execution will be terminated:

External trajectory control mode
Jog (manual) control mode
Master/slave mode
Torque control mode
Velocity control mode

Examples

Move.StopSpecialModes ' Halts any special control modes in effect

See Also

Move Class | Move.StartJogMode | Move.StartTorqueCntrl | Move.StartVelocityCntrl |
Robot.Rapid.Decel

GPL Dictionary Pages

218

Move.Trigger Method

Primes the system to automatically assert a digital output signal at a prescribed trigger
position during the next motion.

Move.Trigger (mode, trigger_pt, channel)

Prerequisites

 High power to the robot must be enabled.
 The robot must be Attached by the thread.

Parameters

mode

A required arithmetic expression that defines the manner in which the
trigger position is defined.

trigger_pt

A required arithmetic expression that defines the trigger position. The
interpretation of this value is a function of the mode.

channel

A required arithmetic expression that specifies the digital I/O channel
whose output is set at the trigger point. If the channel number is positive,
the output is turned ON at the trigger point. If the channel number is
negative, the output is turned OFF at the trigger point. If the value is 0,
any previous Move.Trigger operation is disabled.

Remarks

After this instruction is executed, the digital output signal defined by the channel will be
asserted when the next motion reaches a specified trigger position. The trigger position
is defined by the mode and the trigger_pt values as described in the following table:

mode trigger_pt Resulting Trigger Point

0 % (0-100)
% of change in position of the motion measured from the
start of the motion.

1 % (0-100)
% of change in position of the motion measured from the
end of the motion.

2 mm
Distance in millimeters from the start of the motion. Only
valid for straight-line and arc motions.

3 mm
Distance in millimeters before the end of the motion. Only
valid for straight-line and arc motions.

4 seconds Time after the start of the motion.

Move Class

219

5 seconds Time before the end of the motion.

For example, if the mode is "1" and the trigger_pt is "10", if the next motion is joint
interpolated, the channel signal will be asserted when the joints are 90% of the way to
their final values.

For modes 4 & 5, the trigger point is computed assuming that the system is operating
with the System Speed (as set via the Operator Control Panel) at a value of 100%. If the
System Speed is set to 50%, the motion time is doubled and the effective trigger point
time is doubled as well. To set the time value to be independent of the System Speed,
the trigger_pt value should be adjusted by the value of the "System wide test speed in %"
(DataID 601).

If the next motion is blended with the subsequent motion and a mode is selected that is
relative to the end of the next motion, the trigger point will be relative to the end of the
blending period. Since the start and end of the blending period are a function of both the
next and the subsequent motion, the trigger point will vary as a function of both motions.
Likewise, if the next motion is blended with the previous motion, trigger points defined
relative to the start of the next motion will vary as a function of the motion blending.

If a motion terminates in the standard manner, the channel is guaranteed to be asserted
at some point during the motion. However, if an error or RapidDecel function
prematurely terminates a motion, the digital output signal may not be asserted.

Examples

Dim pf1 As New Profile ' Use default accel/decel
Robot.Attached = 1 ' Get control of robot #1
Signal.DIO(20001) = 0 ' Turn off signal
Move.Trigger(1, 10, 20001) ' Turn on 90% into motion
Move.Rel(Location.XYZValue(10), pf1) ' Move 10 mm in tool coordinates
Robot.Attached = 0 ' Release control of robot

See Also

Move Class

GPL Dictionary Pages

220

Move.WaitForEOM Method

Suspends execution of the current thread until the robot completes its current motion.

Move.WaitForEOM

Prerequisites

 High power to the robot must be enabled.
 The robot must be Attached by the thread.

Parameters

None

Remarks

This allows a program that is controlling a robot (i.e. Attached to) to synchronizing its
execution with the robot by suspending execution of the thread until any current robot
motion has been completed. This method is valid for waiting until the completion of both
position and velocity controlled motions.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Move.Loc(loc1, prof1) ' Move to global loc1
Move.WaitForEOM ' Execution suspended until robot at loc1
 : ' Execution continues here after robot stops

See Also

Move Class | Move.Approach | Move.Loc | Move.OneAxis | Move.Rel

221

Networking Classes
Networking Classes Summary

The following pages provide detailed information on the properties and methods for the
various classes that implement Ethernet networking communications.

The networking classes include: a IPEndPoint Class for specifying IP and port
addresses; a Socket Class that is the basis for most networking I/O operations and
contains the basic send and receive methods; a TcpListener Class that is used for
implementing TCP server applications; a TcpClient Class for implementing TCP client
applications; and finally a UdpClient Class for implementing both the server and client
side of UDP based communications.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

IPEndPoint Member Type Description

New IPEndPoint Constructor
Method

Creates an Endpoint and allows the IP
Address and Port to be specified.

ipendpoint_obj.IPAddress Property Sets or gets the IP Address of an Endpoint.
ipendpoint_obj.Port Property Sets or gets the Port of an Endpoint.

Socket Member Type Description

socket_obj.Available Property
Gets the number of data bytes currently
available to receive from a Socket.

socket_obj.Blocking Property
Sets or gets the blocking mode for a Socket.
If True, the Socket blocks. If False, it does
not block.

socket_obj.Close Method
Closes any connections associated with a
Socket.

socket_obj.Connect Method
Requests a TCP Client connection with a
remote TCP Server.

socket_obj.Receive Method
Receives a datagram from an open TCP
connection.

socket_obj.ReceiveFrom Method
Receives a datagram from an open UDP
connection.

socket_obj.ReceiveTimeout Property
Sets or gets the receive timeout, in
milliseconds, for a Socket.

socket_obj.Send Method
Sends a datagram on an open TCP
connection.

socket_obj.SendTimeout Property
Sets or gets the send timeout, in
milliseconds, for a Socket.

socket_obj.SendTo Method
Sends a datagram to an open UDP
connection.

GPL Dictionary Pages

222

TcpClient Member Type Description

New TcpClient Constructor
Method

Creates an Object for a TCP Client and
optionally requests a connection.

tcpclient_obj.Client Method
Returns the embedded Socket for
performing I/O.

tcpclient_obj.Close Method
Closes a Client Socket and breaks any
connection.

TcpListener Member Type Description

New TcpListener Constructor
Method

Creates an Object for a TCP Server to
listen for connections.

tcplistener_obj.AcceptSocket Method
Accepts a connection and returns a new
Socket Object for use by the TCP Server.

tcplistener_obj.Close Method
Stops listening and closes the listener
Socket.

tcplistener_obj.Pending Property
True if there is a pending connection and
AcceptSocket will succeed. Otherwise
False.

tcplistener_obj.Start Method Starts listening for connection requests.

tcplistener_obj.Stop Method
Stops listening and closes the listener
Socket. Same as Close method.

UdpClient Member Type Description

New UdpClient Constructor
Method

Creates an Object for I/O using UDP.

udpclient_obj.Client Method
Returns the embedded Socket for
performing I/O.

udpclient_obj.Close Method Closes a Socket.

Networking Classes

223

New IPEndPoint Constructor

Constructor for creating an IP endpoint object and optionally initializing it.

New IPEndPoint (IP_address, port_number)

Prerequisites

None

Parameters

IP_address

An optional string containing a standard IP address in the form
“nnn.nnn.nnn.nnn”. This address identifies a computer or computer-
based device on the network. If omitted, or empty, the IP address is
assumed to be a “wild card”, matching any address.

port_number

An optional number specifying the port number, from 0 to 65536 of a
process, protocol, or connection. If omitted, the port number is assigned
automatically.

Remarks

The combination of IP address and port uniquely specifies a computer and process on a
network. When messages are exchanged, both the sender and the receiver have an
endpoint address consisting of these two items.

Examples

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address 192.168.0.2
Dim ep As New IPEndPoint("", 69) ' Port 69 at any address

See Also

Networking Classes | ipendpoint_object.IPAddress | ipendpoint_object.Port

GPL Dictionary Pages

224

ipendpoint_object.IPAddress Property

Sets or gets the IP address associated with an IPEndPoint object.

ipendpoint_object.IPAddress = <ip_address_string>
-or-
...ipendpoint_object.IPAddress

Prerequisites

None

Parameters

None

Remarks

The IP Address identifies a computer or computer-based device on the network. If empty,
the IP address is assumed to be a “wild card”, matching any address.

This property converts the IP Address part of an IPEndPoint Object to or from a string
value. The string value contains the address in the form nnn.nnn.nnn.nnn where each
nnn field is a decimal number representing 8 bits of the 32-bit IP address.

Examples

Dim ep As New IPEndPoint()
ep.IPAddress = "192.168.0.2" ' Assign the IP Address to the endpoint
Console.Writeline(ep.IPAddress) ' Display the IP Address of the endpoint

See Also

Networking Classes | NewIPEndPoint | ipendpoint_object.Port

Networking Classes

225

ipendpoint_object.Port Property

Sets or gets the port number associated with an IPEndPoint Object.

ipendpoint_object.Port= <port_number>
-or-
...ipendpoint_object.Port

Prerequisites

None

Parameters

None

Remarks

The port number specifies a process, protocol, or connection at an endpoint. This number
may range from 0 to 65536.

This property sets or gets the port number of an IPEndPoint Object.

Examples

Dim ep As New IPEndPoint()
ep.Port = 1234 ' Set the port of an endpoint object
Console.Writeline(ep.Port) ' Display the port of the endpoint

See Also

Networking Classes | NewIPEndPoint | ipendpoint_object.IPAddress

GPL Dictionary Pages

226

socket_object.Available Property

Gets the number of data bytes currently available to receive from a Socket.

...socket_object.Available

Prerequisites

The Socket must be open and ready to receive data.

Parameters

None

Remarks

This property returns the number of bytes available on an open Socket. If this number is
greater than zero, a Receive or ReceiveFrom method may be called to read data.
Throws an Exception if the Socket is not open or an error occurs.

This method may be used to poll for data to read. A better solution is to set the
ReceiveTimeout property for the Socket.

Examples

While ts.Available = 0 ' Test if anything to receive
 Thread.Sleep(1000) ' Wait 1 second
End While
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.Blocking | socket_object.ReceiveTimeout

Networking Classes

227

socket_object.Blocking Property

Gets or sets the blocking I/O mode for a Socket.

socket_object.Blocking= <boolean_value>
-or-
...socket_object.Blocking

Prerequisites

The Socket must be open in order to set this flag.

Parameters

None

Remarks

This property sets or gets the state of the blocking mode for a Socket. If the Socket is in
blocking mode, calls to receive data wait until data is available, and calls to send data
wait if the output queue is full. If the Socket is not in blocking mode, calls to send or
receive data throw an Exception if they would have to wait.

By default Sockets are created in blocking mode.

Non-blocking mode may be used to poll for data to read by repeatedly issuing receive
requests and handling the Exception. A better solution is to use the Available property
or to set the ReceiveTimeout or SendTimeout property for the Socket.

Examples

ts.Blocking = 0 ' Set to non-blocking mode
While ts.Available = 0 ' Test if anything to receive
 Thread.Sleep(1000) ' Wait 1 second
End While
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.ReceiveTimeout | socket_object.SendTimeout

GPL Dictionary Pages

228

socket_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

Networking Classes

229

socket_object.Connect Method

Initiates a TCP client connection with a remote TCP server.

socket_object.Connect (remote_endpoint)

Prerequisites

The Socket Object must have been created by a tcpclient_object.Client method with the
endpoint parameter omitted.

Parameters

remote_endpoint

A required IPEndPoint Object that specifies the IP address and port
number of the remote endpoint to which you wish to connect.

Remarks

This method is only called when the remote endpoint of a connection was not specified in
the constructor for the initial TcpClient Object from which the Socket was obtained.

Examples

Dim tc As New TcpClient() ' Optional endpoint not specified
Dim sock As Socket
Dim ep As New IPEndPoint("192.168.0.3", 1234)
sock = tc.Client
sock.Connect(ep)

See Also

Networking Classes | New TcpClient Constructor

GPL Dictionary Pages

230

socket_object.Receive Method

Receives a message from an open TCP connection.

...socket_object.Receive(input_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

The Socket Object must have been created by the tcpclient_object.Client method or the
tcplistener_object.AcceptSocket method.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they must be read by subsequent Receive
method calls.

Remarks

If blocking is enabled, this method blocks until some data is received. There is no
guarantee that an entire datagram is received at once.

This method returns the number of bytes of data received. If the number is zero, this
indicates that the TCP connection has been broken by either the local or remote
endpoint. In this case, the program should close the Socket.

If any other network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim input As String
Dim count As Integer
sock = tc.Client
count = sock.Receive(input, 2000)

See Also

Networking Classes | socket_object.ReceiveFrom

Networking Classes

231

socket_object.ReceiveFrom Method

Receives a message from an open UDP Socket.

...socket_object.ReceiveFrom(input_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Object must be open for UDP I/O.

The Socket Object must have been created by the udpclient_object.Client method.

Parameters

input_buffer

A ByRef String variable where the received data is stored.

max_length

The maximum number of data bytes that are read. If more bytes are
available than this maximum, they are lost.

remote_endpoint

A ByRef IPEndPoint Object that receives endpoint information
identifying the remote source of the received data. The original contents
of remote_endpoint are ignored and replaced by the new information.

Remarks

If blocking is enabled, this method blocks until some data is received. The entire
datagram is transferred by this method, if the max_length value is large enough.

Because of internal limitations on datagram size, max_length values greater than 1536
are not useful.

This method returns the number of bytes of data received. If that number is zero, this
indicates that the Socket has been disconnect and should therefore be closed.

If any other network errors occur, this method throws an Exception.

Examples

Dim local_ep As New IPEndPoint("", 1234) ' Receive data for port 1234.
Dim uc As New UdpClient(local_ep)
Dim remote_ep As IPEndPoint
Dim sock As Socket
Dim input As String

GPL Dictionary Pages

232

Dim count As Integer
sock = uc.Client
count = sock.ReceiveFrom(input, 2000, remote_ep)
Console.Writeline("Remote IP address: " & remote_ep.IPAddress)
Console.Writeline("Remote Port: " & CStr(remote_ep.Port))

See Also

Networking Classes | socket_object.Receive

Networking Classes

233

socket_object.ReceiveTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
receive data.

socket_object.ReceiveTimeout = <timeout>
-or-
...socket_object.ReceiveTimeout

Prerequisites

The Socket must currently be open to set this property.

Parameters

None

Remarks

This property allows you to set the timeout period for a Receive or ReceiveFrom
method. It only applies if the Socket is set to blocking. If a receive request blocks waiting
for data, it will only wait for the specified timeout period. If that time is exceeded, the
receive requests throws an Exception. If the timeout period is set to 0, the timeout is
disabled and a request may block indefinitely.

Examples

ts.ReceiveTimeout = 30000 ' Timeout in 30 seconds
ts.Receive(recv, 1500) ' Receive the data

See Also

Networking Classes | socket_object.Blocking| socket_object.SendTimeout

GPL Dictionary Pages

234

socket_object.Send Method

Sends a message to an open TCP connection.

...socket_object.Send(output_buffer, max_length)

Prerequisites

An active TCP connection must exist for the Socket.

The Socket Object must have been created by the tcpclient_object.Client method or the
tcplistener_object.AcceptSocket method.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If in blocking mode, the
returned value is always equal to the number of bytes requested. In non-blocking mode,
the value may be less than the number of bytes requested. In that case, you should re-
issue the Send to output the remainder of the bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("192.168.0.3", 1234)
Dim tc As New TcpClient(ep)
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = tc.Client
...
count = sock.Send(output)

See Also

Networking Classes | socket_object.SendTo

Networking Classes

235

socket_object.SendTimeout Property

Sets or Gets the timeout period, in milliseconds, for a Socket to block while waiting to
send data.

socket_object.SendTimeout = <timeout>
-or-
...socket_object.SendTimeout

Prerequisites

None

Parameters

None

Remarks

The property allows you to set the timeout period for a Send or SendTo method. It only
applies if the Socket is set to blocking. If a send request blocks waiting for the output
queue, it will only wait for the specified timeout period. If that time is exceeded, the send
request throws an Exception. If the timeout period is set to 0, the timeout is disabled and
a send may block indefinitely.

Examples

ts.SendTimeout = 30000 ' Timeout in 30 seconds
ts.Send(trns, 1500) ' Send the data

See Also

Networking Classes | socket_object.Blocking| socket_object.ReceiveTimeout

GPL Dictionary Pages

236

socket_object.SendTo Method

Sends a message using an open UDP Socket.

...socket_object.SendTo(output_buffer, max_length, remote_endpoint)

Prerequisites

The Socket Object must be open for UDP I/O.

The Socket Object must have been created by the udpclient_object.Client method.

Parameters

output_buffer

The String value that is sent.

max_length

An optional value indicating the maximum number of data bytes to send.
If omitted or zero, the entire output_buffer string is sent.

remote_endpoint

An IPEndPoint Object that contains endpoint information identifying the
remote destination for the data sent.

Remarks

If blocking is enabled, this method blocks if the output queue is full.

This method returns the number of bytes of data actually sent. If that number is less than
the number requested, you should re-issue the SendTo to output the remainder of the
bytes.

If any network errors occur, this method throws an Exception.

Examples

Dim uc As New UdpClient()
Dim remote_ep As IPEndPoint("192.168.0.5")
Dim sock As Socket
Dim output As String
Dim count As Integer
sock = uc.Client
count = sock.SendTo(output, 0, remote_ep)
...
count = sock.ReceiveFrom(input, 2000, remote_ep) ' Get new remote endpoint
...

Networking Classes

237

count = sock.SendTo(output, 0, remote_ep) ' Reply to previous sender

See Also

Networking Classes | socket_object.Send

GPL Dictionary Pages

238

New TcpClient Constructor

Constructor for creating a TcpClient Object and optionally connecting to a remote TCP
server.

New TcpClient (endpoint)

Prerequisites

None

Parameters

endpoint

An optional IPEndPoint Object that contains the IP address and port
identifying the remote endpoint of a TCP server. If omitted, a Connect
method must be called later for the TCP client Socket before I/O can be
performed.

Remarks

This constructor creates a new TcpClient Object and creates the underlying Socket. If
the optional endpoint parameter is specified, a connect request is sent immediately to the
remote server. If it is omitted, a Connect method must be called for the TCP client
Socket before I/O can be performed.

Examples

Dim ep As New IPEndPoint("192.168.0.2", 1234) ' Port 1234 at address 192.168.0.2
Dim tc As New TcpClient(ep) ' Connect to remote endpoint

Dim tc As New TcpClient() ' Create socket but do not connect

See Also

Networking Classes | socket_object.Connect

Networking Classes

239

tcpclient_object.Client Method

Returns the Socket Object associated with a TcpClient Object.

...tcpclient_object.Client

Prerequisites

None

Parameters

None

Remarks

Since all I/O is performed on Sockets, this method allows the Socket associated with a
TcpClient object to be accessed.

Examples

Dim tc As New TcpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | udpclient_object.Client

GPL Dictionary Pages

240

tcpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

Networking Classes

241

New TcpListener Constructor

Constructor for creating a TcpListener Object that allows a TCP server to be created.

New TcpListener (endpoint)

Prerequisites

None

Parameters

endpoint

An IPEndPoint Object that contains the IP address and port identifying
the local endpoint for connections accepted by this TCP server. The IP
address of this endpoint is ignored since GPL controllers only have a
single IP address. The port number determines the port on which the
server listens.

Remarks

This constructor creates a new TcpListener Object and creates the underlying Socket.
It does not actually begin listening for connections until the Start method is called. These
Objects are the basis for implementing TCP servers.

Examples

Dim ep As New IPEndPoint("", 1234) ' Listen on port 1234
Dim tl As New TcpListener(ep) ' Create listener object

See Also

Networking Classes | tcplistener_object.Start

GPL Dictionary Pages

242

tcplistener_object.AcceptSocket Method

Accepts a TCP connection and returns a new Socket Object for performing I/O on that
connection.

...tcplistener_object.AcceptSocket

Prerequisites

The TCP listener associated with the tcplistener_object should have already been
started.

Parameters

None

Remarks

This method is used by a TCP server to accept a connection request from a remote TCP
client. It creates a new Socket for performing I/O with that client. If no connection
requests are pending, this method blocks until one is received. To avoid blocking, use the
Pending property before calling AcceptSocket.

If any network errors occur, this method throws an Exception.

Examples

Dim ep As New IPEndPoint("", 1234) ' Listen on port 1234
Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener_object.Pending

Networking Classes

243

tcplistener_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

GPL Dictionary Pages

244

tcplistener_object.Pending Property

Gets a Boolean value that indicates if there are any TCP connection requests pending.

...tcplistener_object.Pending

Prerequisites

The TCP listener associated with the tcplistener_object must have already been started.

Parameters

None

Remarks

This property is used by a TCP server to test if there are any pending connection
requests for a TcpListener Object. If so, it returns True. Otherwise it returns False. If
there is a pending request, call the AcceptSocket method to accept it.

If any network errors occur, this property returns False.

Examples

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
If tl.Pending Then
 sock = tl.AcceptSocket
End If

See Also

Networking Classes | tcplistener_object.AcceptSocket

Networking Classes

245

tcplistener_object.Start Method

Start listening for TCP connection requests.

tcplistener_object.Start

Prerequisites

None

Parameters

None

Remarks

This method is used by TCP servers to start listening for connection requests from
remote TCP clients. You can test if any requests are received by using the Pending
property. After a request is received, it is accepted by calling the AcceptSocket method.
After you accept a connection request, you can call the Stop method to cease accepting
any further connection requests if you wish. Executing the Stop method does not effect
your ability to continue to service datagrams for connections that have already been
established.

If any network errors occur, this method throws an Exception.

Examples

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket

See Also

Networking Classes | tcplistener_object.AcceptSocket

GPL Dictionary Pages

246

tcplistener_object.Stop Method

Stop listening for TCP connection requests.

tcplistener_object.Stop

Prerequisites

None

Parameters

None

Remarks

This method is used by TCP servers when they are done listening for connection
requests from remote TCP clients. Executing this method does not effect your ability to
continue to service datagrams for connections that have already been established.

No error occurs if the listener is not active.

Examples

Dim tl As New TcpListener(ep) ' Create listener object
Dim sock As Socket
tl.Start
sock = tl.AcceptSocket
tl.Stop

See Also

Networking Classes | tcplistener_object.Start

Networking Classes

247

New UdpClient Constructor

Constructor for creating a UdpClient Object.

New UdpClient (endpoint)

Prerequisites

None

Parameters

endpoint

An optional IPEndPoint Object that contains the IP address and port
identifying the local endpoint for datagrams recognized by this UDP
Socket. The IP address of this endpoint is ignored since GPL controllers
only have a single IP address. If the port is non-zero, only datagrams to
the specified port can be received.

Remarks

This constructor creates a new UdpClient Object and creates the underlying Socket. No
network I/O is generated by this method.

Examples

Dim ep As New IPEndPoint("", 1234) ' Port 1234
Dim uc As New UdpClient(ep) ' Create a socket for UDP communications

See Also

Networking Classes | udpclient_object.Client

GPL Dictionary Pages

248

udpclient_object.Client Method

Returns the Socket Object associated with a UdpClient Object.

...udpclient_object.Client

Prerequisites

None

Parameters

None

Remarks

Since all I/O is performed on Sockets, this method allows the Socket associated with a
UdpClient Object to be accessed.

Examples

Dim tc As New UdpClient(ep)
Dim sock As Socket
sock = tc.Client

See Also

Networking Classes | tcpclient_object.Client

Networking Classes

249

udpclient_object.Close Method

Closes the network connection associated with a Socket, TcpListener, TcpClient, or
UdpClient Object.

socket_object.Close
-or-
tcplistener_object.Close
-or-
tcpclient_object.Close
-or-
udpclient_object.Close

Prerequisites

None

Parameters

None

Remarks

The Close method may be used to close the network connection and free up resources.
If it is called with a TcpListener, TcpClient, or UdpClient Object, the underlying Socket
is actually closed.

If the Socket is not currently open, no error occurs.

Examples

Dim tl As New TcpListener(ep)
Dim sock As Socket
...
tl.Close
sock.Close

See Also

Networking Classes

250

Profile Class
Profile Class Summary

The following pages provide detailed information on the properties and methods of the
Profile Class. This class defines the attributes of objects that are used to specify the
performance parameters for a typical motion. That is, a Profile Object contains speed,
acceleration, deceleration, in range criteria and other specifications that dictate how a
motion is to be performed. The basic motion instruction, Move.Loc, takes as its two
arguments a Profile Object and a Location Object. The Location Object specifies the
destination for the robot motion and the Profile Object specifies how the robot is to get to
the destination.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Profile Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

profile_obj.Speed Property
Sets and gets peak motion speed specified as
a percentage of the nominal speed.

profile_obj.Speed2 Property

Sets and gets the secondary peak motion
speed specification as a percentage of their
nominal speeds for selected axes during
Cartesian motions.

profile_obj.Accel Property
Sets and gets peak motion acceleration
specified as a percentage of the nominal
acceleration.

profile_obj.Decel Property
Sets and gets peak motion deceleration
specified as a percentage of the nominal
deceleration.

profile_obj.AccelRamp Property
Sets and gets duration for ramping up to the
peak acceleration, specified in seconds.

profile_obj.DecelRamp Property
Sets and gets duration for ramping up to the
peak deceleration, specified in seconds.

profile_obj.Straight Property
Sets and gets Boolean indicating if the robot is
to follow a straight-line path.

profile_obj.InRange Property

Sets and gets constraint that specifies if the
robot should be stopped at the end of the
motion and when the robot is close enough to
the final destination to be considered at its
final position.

profile_obj.Clone Method Method that returns a copy of the profile_obj.

Profile Class

251

profile_object.Accel Property

Sets and gets the peak motion acceleration defined as the percentage of the nominal
acceleration.

profile_object.Accel = <new_value>
-or-
...profile_object.Accel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Accel property defines the peak acceleration
that the motion can achieve. An Accel value of 100 corresponds to the nominal (100%)
acceleration for the specified type of motion. The Accel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the acceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the acceleration percentage is applied to the joint
angles.

The acceleration that the robot actually achieves for a given motion may be different than
the Accel value for a number of reasons: if an AccelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified acceleration;
the Accel value may be limited by the maximum permitted Accel value; or the Accel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Accel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

GPL Dictionary Pages

252

See Also

Profile Class | profile_object.AccelRamp | profile_object.Decel | profile_object.DecelRamp

Profile Class

253

profile_object.AccelRamp Property

Sets and gets the duration for ramping up to the peak acceleration, specified in seconds.

profile_object.AccelRamp = <new_value>
-or-
...profile_object.AccelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the AccelRamp property specifies how long, in
seconds, its takes for the Accel to achieve its specified value. Likewise, this time is also
used for ramping the Accel down to zero. If the AccelRamp time is set to zero, at the
start of a motion, the Accel command instantaneously jumps up to its specified value and
then, at the end of acceleration period, instantaneously drops down to zero. A zero
AccelRamp time corresponds to a square wave acceleration curve and commands an
infinite jerk, i.e. rate of change of the acceleration. A non-zero AccelRamp time produces
a trapezoidal acceleration curve, which is often referred to as an s-curve profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low accelerations or for very stiff robots,
a square wave acceleration profile may be more beneficial.

The actual acceleration ramp time for a given motion may be different than the
AccelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Accel value; or the AccelRamp value may
be automatically scaled by with the Accel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified AccelRamp and Accel values with the
Speed so that slow motions have gentler accelerations with shorter ramp times and fast
motions accelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the AccelRamp
parameter only needs to be set if you wish to deviate from the default value.

GPL Dictionary Pages

254

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Accel = 50 ' Only accelerate at 50% of nominal rate
prof1.AccelRamp = 0.1 ' Take 0.1 sec to achieve 50% nominal accel
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.DecelRamp

Profile Class

255

profile_object.Clone Method

Method that returns a copy of the profile_object.

...profile_object.Clone

Prerequisites

None

Parameters

None

Remarks

For objects, if a program contains a simple assignment statement:

object_1 = object_2

the result is that object_1 points to the same data as object_2. Any subsequent change of
a property in either object_1 or object_2 affects the data associated with both objects.

If you wish to make an independent copy of an object, the Clone method is the standard
means for performing this operation:

object_1 = object_2.Clone

Examples

Dim prof1 As New Profile ' Create new profile set to default values
Dim prof2 As Profile ' Create new profile with no data allocated
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
prof2 = prof1.Clone ' Makes a copy of prof1 data
prof2.Accel = 50 ' Doesn’t affect prof1 data

See Also

Profile Class

GPL Dictionary Pages

256

profile_object.Decel Property

Sets and gets the peak motion deceleration defined as the percentage of the nominal
deceleration.

profile_object.Decel = <new_value>
-or-
...profile_object.Decel

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Decel property defines the peak deceleration
that the motion can achieve. An Decel value of 100 corresponds to the nominal (100%)
deceleration for the specified type of motion. The Decel value can range from 1.0 up to a
maximum value permitted for the robot. For a Straight-line motion, the Deceleration is
computed along the path and about the Cartesian rotational angles defined by the robot’s
kinematic module. For joint motions, the deceleration percentage is applied to the joint
angles.

The deceleration that the robot actually achieves for a given motion may be different than
the Decel value for a number of reasons: if an DecelRamp (s-curve profile) value is
specified, the motion may not be long enough to ramp up to the specified deceleration;
the Decel value may be limited by the maximum permitted Decel value; or the Decel
value may be automatically scaled if the Parameter Database “Couple %accel/%decel to
%speed” parameter is set. The Parameter DB value is a convenience feature that
automatically scales the specified Accel and Decel values with the Speed so that slow
motions have gentler accelerations and decelerations and fast motions accelerate and
decelerate as quickly as possible.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Decel parameter only
needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

Profile Class

257

Profile Class | profile_object.Accel | profile_object.AccelRamp | profile_object.DecelRamp

GPL Dictionary Pages

258

profile_object.DecelRamp Property

Sets and gets the duration for ramping up to the peak deceleration, specified in seconds.

profile_object.DecelRamp = <new_value>
-or-
...profile_object.DecelRamp

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the DecelRamp property specifies how long, in
seconds, its takes for the Decel to achieve its specified value. Likewise, this time is also
used for ramping the Decel down to zero. If the DecelRamp time is set to zero, at the
start of the motion deceleration period, the Decel command instantaneously jumps up to
its specified value and then, at the end of the motion, instantaneously drops down to
zero. A zero DecelRamp time corresponds to a square wave deceleration curve and
commands an infinite jerk, i.e. rate of change of the deceleration. A non-zero DecelRamp
time produces a trapezoidal deceleration curve, which is often referred to as an s-curve
profile.

S-curve acceleration and deceleration profiles limit the impact of starting and stopping
motions and help to reduce the excitation of resonances (or ringing) in the robot
structure. An s-curve profile can often reduce the settling time at the end of the motion
since each axes more smoothly glides into its final position with less oscillations. On the
other hand, an s-curve profile will lengthen the planned duration of a motion since the
average acceleration and deceleration will be less than a square wave profile. So, while
most robots will benefit from s-curve profiles, for low decelerations or for very stiff robots,
a square wave deceleration profile may be more beneficial.

The actual deceleration ramp time for a given motion may be different than the
DecelRamp value for a number of reasons: if the motion is short, there may not be
sufficient time to ramp all of the way up to the Decel value; or the DecelRamp value may
be automatically scaled by with the Decel value if the Parameter Database “Couple
%accel/%decel to %speed” parameter is set. The Parameter DB value is a convenience
feature that automatically scales the specified DecelRamp and Decel values with the
Speed so that slow motions have gentler decelerations with shorter ramp times and fast
motions decelerate more quickly but have longer ramp times.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the DecelRamp
parameter only needs to be set if you wish to deviate from the default value.

Profile Class

259

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Decel = 25 ' Only decelerate at 25% of nominal rate
prof1.DecelRamp = 0.1 ' Take 0.1 sec to achieve 50% nominal decel
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

Profile Class | profile_object.Accel | profile_object.AccelRamp| profile_object.Decel

GPL Dictionary Pages

260

profile_object.InRange Property

Gets and sets the constraint that specifies if the robot should be stopped at the end of the
motion and when the robot is close enough to the final destination to be considered at its
final position.

profile_object.InRange = <new_value>
-or-
...profile_object.InRange

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

Whenever the robot picks up a part or places it at its final destination, the robot should
normally be brought to a complete stop and any small position errors should be
eliminated (nulled) before the part is grasped or released. Conversely, if the robot is
moving through intermediate (via) positions simply to clear obstacles, bringing the robot
to a stop at these positions increases the cycle time without providing any benefit. Also,
when the robot is to be brought to a stop, there are instances where it is beneficial to
spend more time reducing the final positioning errors to the tightest possible position
constraint for the robot and other times when a looser constraint is acceptable to save
cycle time.

The InRange property specifies if the robot is to stop at the end of motion and, if so, how
tight a position error constraint should be applied to determine when the robot has
reached its final destination. The value of this property is interpreted as follows:

InRange Value Interpretation

<0 Don’t stop the robot at the end of the motion. Blend with the next
motion if possible.

0 Stop the robot at the end of the motion, but do not apply any position
error constraints. This means that as soon as the final set point
command has been issued to the servos, GPL will signal that the
motion has been completed.

Small number >0 Stop the robot at the end of the motion, but use a very small (loose)
position error constraint. This will ensure that the robot has
approximately reached the specified destination before GPL considers
that the motion has been completed.

Large number <=
100

Stop the robot at the end of the motion and apply a stringent position
error constraint. If this value is 100, the robot will have to be within its
tightest error envelope before GPL considers the motion completed.

Profile Class

261

Values greater than 100 can be specified, but these require smaller
error tolerances than are recommended by the manufacturer of the
robot.

When a New Profile is created, its properties are automatically set to reasonable default
values. Normally, the InRange property defaults to 100. Therefore, the InRange
parameter only needs to be altered if this default value is not appropriate.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.InRange = 10 ' Stop at EOM, reduced requirement for inrange
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1

See Also

Profile Class

GPL Dictionary Pages

262

profile_object.Speed Property

Sets and gets the peak motion speed specified as a percentage of the nominal speed.

profile_object.Speed = <new_value>
-or-
...profile_object.Speed

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

When generating a motion segment, the Speed property defines the peak speed that the
motion can achieve. A Speed value of 100 corresponds to the nominal (100%) speed for
the specified type of motion. The Speed value can range from 1.0 up to a maximum
value permitted for the robot. For a Straight-line motion, the speed is computed along
the path and about the Cartesian rotational angles defined by the robot’s kinematic
module. For joint motions, the speed percentage is applied to the joint angles.

While 100% is normally the maximum operating speed recommended by the robot
manufacturer, there are times that a greater Speed setting may be beneficial. Often, the
100% Speed setting is established for when the robot is carrying its maximum payload.
Also, 100% Speed may be the sustained maximum speed setting, but higher burst
speeds may be permitted.

The speed that the robot actually achieves for a given motion may be different than the
specified Speed value for a number of reasons: the motion may not be long enough to
ramp up to the specified speed given the available acceleration; the Speed value may be
limited by the maximum permitted Speed value; or the operator may have set a slow
“Test Speed” that scales down the specified Speed value.

When a New Profile is created, its properties are automatically set to the default values
specified in the controller’s Configuration Database. Therefore, the Speed parameter
only needs to be set if you wish to deviate from the default value.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Speed = 50 ' Only go at half of the rated speed
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

See Also

Profile Class

263

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed2

GPL Dictionary Pages

264

profile_object.Speed2 Property

Sets and gets the secondary peak motion speed specification as a percentage of their
nominal speeds for selected axes during Cartesian motions.

profile_object.Speed2 = <new_value>
-or-
...profile_object.Speed2

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified Cartesian motion segment is generated.

Parameters

None

Remarks

For all joint interpolated and the majority of Cartesian motions, the standard Speed
property is used to control the peak speed of the robot. However, for certain robot
geometries and certain Cartesian (straight-line) motions, it is beneficial to have a
secondary property to control motion speeds.

The Speed2 property only applies to Cartesian motions and is generally used to specify a
secondary speed setting to control the peak rotation speed for a motion. If Speed2 is
zero, both the peak translation and rotation are governed by the Speed property. If
Speed2 is non-zero, the peak Cartesian translation motion speed is limited by the Speed
property and the peak Cartesian rotation speed is limited by Speed2. For a such a
motion, the speed value that is more limiting will govern the overall motion timing.

For most motions, Speed2 should be set to 0. However, if your robot has a wrist that can
rotate very quickly and it is unpredictable as to whether the motion will be primarily a
translation or a rotation, Speed2 can be set low to limit the speed of a large rotation
without negatively impacting motions that are primarily translations.

For some special kinematic modules, Speed2 may also be applied to other degrees-of-
freedom. Please see the Kinematic Library for specific information on these special uses.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Straight = True
prof1.Speed2 = 25 ' Limit Cartesian rotation speed
prof1.Speed = 100 ' Keep translation speed at full
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 with performance “prof1”

Profile Class

265

See Also

Profile Class | profile_object.Accel | profile_object.Decel | profile_object.Speed

GPL Dictionary Pages

266

profile_object.Straight Property

Sets and gets Boolean indicating if the robot’s tool tip is to follow a straight-line path or if
the path will be a function of the robot’s geometry.

profile_object.Straight = <new_value>
-or-
...profile_object.Straight

Prerequisites

Takes effect when the profile_object is passed as a parameter to a Move Class method
and the specified motion segment is generated.

Parameters

None

Remarks

For certain motions, the path of the robot’s tool or the part being held by the robot is
important and moving along a straight line is desirable. In other cases, the path may not
be important. In the latter case, the robot may move faster if the path is defined by
interpolating between the joint angles of the initial and final Locations.

If the Straight property is True, by making use of the system’s built-in knowledge of the
robot’s geometry (i.e. kinematics), the robot’s tool tip is moved along a straight-line path
in Cartesian space. If Straight is False, the system will interpolate in joint angles to move
the robot to its destination.

If the robot is a simple 1, 2, or 3 degree-of-freedom Cartesian mechanism with all linear
axes, there is no difference between straight-line and joint interpolated motions.
However, if the Cartesian robot has a rotary theta axis or if the robot is a non-Cartesian
mechanism with rotary or parallel axes, the two motion types are quite different.

In situations where the path is not important, joint interpolated motions requires less
processor time and the robot will often move more quickly.

By default, when a New Profile is created, Straight is set to False.

Examples

Dim prof1 As New Profile ' Create new profile set to default values
prof1.Straight = True
Move.Loc (loc1, prof1) ' Perform motion to previously defined
 ' location, loc1 by moving along a straight path

See Also

Profile Class

267

Profile Class

268

Reference Frame Class
RefFrame Class Summary

The following pages provide detailed information on the properties and methods of the
reference frame class, RefFrame. If one or more Location Objects are defined with
respect to a RefFrame Object, when the position and/or orientation of the reference
frame are altered, the position and orientation of all associated Location Objects are
automatically adjusted as well.

RefFrame Objects are very useful when picking up or placing several parts that are at
fixed positions relative to a base plate or when accessing pallets that have parts arranged
in a rectangular grid. The assembly of a printed circuit board is a common example of the
first situation. When a PCB enters into a machine for mounting electronic components,
the position and orientation of the PCB is first accurately determined, typically using a
vision system. The reference frame that represents the PCB is then updated and all of
the positions and orientations of the components to be placed are automatically adjusted.
The use of robots in the laboratory automation industry provides a good example for the
use of pallet reference frames. In this case, samples to be tested are placed on a tray
and arranged in a rectangular grid pattern. After the tray is located and its associated
reference frame updated, the RefFrame Class provides a simple means for stepping
from sample to sample.

To allow different types of static and dynamic reference frames to be represented, the
RefFrame Object includes a Type property. At present, only a basic reference frame is
supported and a pallet reference frame. In the future, additional types of reference frames
will be added.

In general, each type of reference frame only makes use of a subset of the properties
and methods of the RefFrame Class. The tables below summarize the properties and
methods utilized for each type of reference frame.

Basic Reference Frame

Member Type Description

refframe_obj.Type Property Set to 0 to indicate a basic reference frame.

refframe_obj.Loc Property
Loc.Pos is set equal to the position and
orientation of the reference frame by a GPL
procedure.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position for any type of reference
frame while ignoring any further reference
frames.

Pallet Reference Frame

Member Type Description

Reference Frame Class

269

refframe_obj.Type Property Set to 1 to indicate a pallet reference
frame.

refframe_obj.Loc Property

Loc.X, Y, andZ define the position of the
first row, column and layer. The orientation
of the X, Y, and Z axes of Loc define the
direction for each row, column, and layer
respectively.

refframe_obj.Pos Method
Returns the absolute (“total”) position and
orientation for any type of reference frame
object.

refframe_obj.PosWrtRef Method
Returns the position for any type of
reference frame while ignoring any further
reference frames.

refframe_obj.PalletIndex Property Sets and gets the index for the next position
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletMaxIndex Property Sets and gets the maximum position index
along the pallet row, column, or layer (1 to n).

refframe_obj.PalletNextPos Method Advances to the next pallet position.

refframe_obj.PalletOrder Property
Sets and gets the parameter that specifies the
order in which PlalletNextPos indexes along
the row, column, and layer indices.

refframe_obj.PalletPitch Property Sets and gets the step size for advancing along
each row, column, or layer.

refframe_obj.PalletRowColLay Method Sets the next pallet position row, column, and
layer indices in a single instruction.

GPL Dictionary Pages

270

refframe_object.Loc Property

Sets and gets a reference frame’s Location Object, which typically contains the nominal
position and orientation of the frame.

refframe_object.Loc = <Cartesian_location_object>
-or-
… refframe_object.Loc

Prerequisites

None

Parameters

None

Remarks

All reference frame types have an associated Cartesian Location Object that is pointed
to by the Loc property. Typically, the nominal position and orientation of the reference
frame is stored in this Location although the specific interpretation of this data is a
function of the reference frame type.

Independent of the reference frame type, the refframe_object.Loc.RefFrame property
always points to the next reference frame if refframe_object is itself relative to another
frame.

The following table describes how to interpret the position and orientation data stored in
the Cartesian Location Object pointed to by refframe_object.Loc.

RefFrame Type refframe_object.Loc Contents

Basic Contains the reference frame position and orientation. So,
refframe_object.Loc.Pos represents the total position of
refframe_object and refframe_object.Loc.PosWrtRef is the position
and orientation of refframe_object with respect to any subsequent
reference frames. If a program wishes to change the position and
orientation of a basic frame, it must do so via refframe_object.Loc.
However, if a program wishes to read the reference frame position and
orientation, it is normally a better practice to use the
refframe_object.Pos and refframe_object.PosWrtRef methods. These
last two methods will return the current total and relative position for
any type of reference frame.

Pallet The XYZ position of the refframe_object.Loc defines the position of
row 1, column 1, and layer 1 of the pallet. The orientation of
refframe_object.Loc defines the direction of the rows, columns, and
layers of the pallet. The X-axis of refframe_object.Loc defines the
index direction for a row. The Y-axis defines the index direction for a

Reference Frame Class

271

column. The Z-axis defines the index direction for layers.

As a convenience, when a new reference frame object is created, a Cartesian Location
Object is automatically created and linked to the reference frame. By default, this
Location will have its position and orientation angles set to zero.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
loc1.RefFrame = ref1 ' Define loc1 wrt ref1
loc1.XYZ(10,0,0,0,180,0) ' Define loc1 poswrtref
Console.Writeline(loc1.Pos.X) ' Displays 107.07
Console.Writeline(loc1.Pos.Y) ' Displays 97.07
Console.Writeline(loc1.Pos.Z) ' Displays -80

See Also

RefFrame Class | refframe_object.Pos| refframe_object.PosWrtRef

GPL Dictionary Pages

272

refframe_object.PalletIndex Property

For a pallet reference frame, sets or gets the row, column or layer index for the next grid
position to be accessed.

refframe_object.PalletIndex(row_col_lay) = <next_index>
-or-
… refframe_object.PalletIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row index is to
be accessed, 2 if the column index is to be accessed, or 3 if the layer
index is to be accessed.

Remarks

This property permits a program to set or get the next row, column, or layer index to be
accessed in a pallet reference frame. Each index can range from 1 to the maximum value
for that dimension as specified by the object’s PalletMaxIndex property. The row,
column, and layer indices are always positive integer numbers. If you wish to step in a
negative direction, the appropriate PalletPitch property for the refframe_object can be
set to a negative number.

If you wish to set all 3 index values at once, you can make use of the object’s
PalletRowColLay method. If you want to just advance to the next logical pallet position,
the PalletNextPos method can be invoked.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletIndex(2) = 2 ' Set grid (1,2,1)
Console.Writeline(loc1.Pos.X) ' Displays 100

Reference Frame Class

273

Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class | refframe_object.PalletMaxIndex | refframe_object.PalletNextPos|
refframe_object.PalletRowColLay

GPL Dictionary Pages

274

refframe_object.PalletMaxIndex Property

For a pallet reference frame, sets or gets the number of rows, columns, or layers in the
pallet.

refframe_object.PalletMaxIndex(row_col_lay) = <maximum_index>
-or-
… refframe_object.PalletMaxIndex(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the number of rows
is to be accessed, 2 if the number of columns is to be accessed, or 3 if
the number of layers is to be accessed.

Remarks

This property allows a program to set or get the number of rows, columns or layers for a
given pallet reference frame. The number of rows, columns or layers is specified by an
integer number greater than or equal to 1.

To specify a specific pallet position, the PalletIndex properties must be set to at least 1
and cannot be greater then the applicable maximum values defined by the
PalletMaxIndex property.

By default, when a new pallet reference frame is created, the maximum pallet indices are
each set to 1.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

Reference Frame Class

275

RefFrame Class | refframe_object.PalletIndex| refframe_object.PalletRowColLay

GPL Dictionary Pages

276

refframe_object.PalletNextPos Method

For a pallet reference frame, advances the pallet position to the next logical position.

refframe_object.PalletNextPos

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Given the current pallet position and the PalletOrder, this method advances the pallet to
the next logical position. For example, if the current pallet position is at the last element in
a row, 3rd column position, and 2nd layer, and the PalletOrder indicates that the pallet
should be incremented by row, column and layer, PalletNextPos will advance to the 1st
row element, 4th column element and 2nd layer.

If the initial pallet position is at the last row, column, and layer position, PalletNextPos
changes the pallet position indices to 1,1,1.

If you want to randomly select the next pallet position, a program can utilize PalletIndex
or PalletRowColLay instead of the PalletNexPos method.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class |refframe_object.PalletIndex| refframe_object.PalletOrder |
refframe_object.PalletRowColLay

Reference Frame Class

277

refframe_object.PalletOrder Property

For a pallet reference frame, sets or gets the parameter that specifies the order in which
the row, column, and layer indices are incremented.

refframe_object.PalletOrder= <indexing_order>
-or-
… refframe_object.PalletOrder

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

None

Remarks

Normally, the rows and columns of a pallet are defined such that a layer of rows and
columns lie in the world coordinate system X-Y plane. If the rows and columns are
defined in such a manner, you may wish to increment from one pallet position to the next
in a different order than the standard row first, then column, then layer pattern. For
example, you may want to stack from the bottom layer to the top layer before
incrementing to the next row or column. The PalletOrder parameter allows a program to
define the order in which the row, column, and layer indices are incremented.

The interpretation of this parameter is presented in the following table.

PalletOrder Value Incrementing Order

0 Row, column, layer
1 Row, layer, column
2 Column, row, layer
3 Column, layer, row
4 Layer, row, column
5 Layer, column, row

By default, when a new pallet reference frame is created, the PalletOrder is set to 0
(row,column,layer).

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size

GPL Dictionary Pages

278

ref1.PalletMaxIndex(2) = 3 ' Define grid size
ref1.PalletOrder = 2 ' Col, row, layer order

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(3,1,1) ' Set grid position
ref1.PalletNextPos ' Advance to 3,2,1
Console.Writeline(loc1.Pos.X) ' Displays 120
Console.Writeline(loc1.Pos.Y) ' Displays 70

See Also

RefFrame Class | refframe_object.PalletNextPos

Reference Frame Class

279

refframe_object.PalletPitch Property

For a pallet reference frame, sets or gets the step size (pitch) between adjacent rows,
columns, or layers in a pallet.

refframe_object.PalletPitch(row_col_lay)= <pitch_size>
-or-
… refframe_object.PalletPitch(row_col_lay)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row_col_lay

A required numerical expression that is equal to 1 if the row pitch is to be
accessed, 2 if the column pitch is to be accessed, or 3 if the layer pitch is
to be accessed.

Remarks

This property allows a program to set or get the step size (pitch) between sequential
rows, columns or layers for a pallet reference frame. The step sizes are in units of
millimeters and can be both positive and negative real numbers.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

RefFrame Class

GPL Dictionary Pages

280

refframe_object.PalletRowColLay Method

For a pallet reference frame, sets the row, column, and layer indices for the next grid
position to be accessed.

refframe_object.PalletRowColLay(row, column, layer)

Prerequisites

The refframe_object must be a pallet reference frame.

Parameters

row

A required numerical expression that specifies the index for the next row
to be accessed, where the row number is interpreted as an integer value
that ranges from 1 to the maximum permitted row index for this pallet, i.e.
refframe_object.PalletMaxIndex(1).

column

A required numerical expression that specifies the index for the next
column to be accessed, where the column number is interpreted as an
integer value that ranges from 1 to the maximum permitted column index
for this pallet, i.e. refframe_object.PalletMaxIndex(2).

layer

A required numerical expression that specifies the index for the next
layer to be accessed, where the layer number is interpreted as an integer
value that ranges from 1 to the maximum permitted layer index for this
pallet, i.e. refframe_object.PalletMaxIndex(3).

Remarks

This is a convenience method that allows a program to explicitly set the row, column, and
layer indices for the next pallet element to be accessed. This method permits a program
to randomly set or reset the next element. For example, if values of 1,1,1 are specified as
the arguments to this method, the first pallet position will be accessed next.

By default, when a new pallet reference frame is created, the pallet indices are set to 1,
1, 1.

The operation performed by this method can also be accomplished by utilizing the
PalletIndex property once for each of the three pallet indices or the PalletNextPos
method can be invoked to advance to the next logical pallet position.

Examples

Reference Frame Class

281

Dim ref1 As New RefFrame ' Also allocates Loc
Dim loc1 As New Location

ref1.Type = 1 ' Change to pallet frame
ref1.Loc.XYZ(100,50,-80,0,0,0) ' Define pallet base
ref1.PalletPitch(1) = 10 ' Spacing along row
ref1.PalletPitch(2) = 20 ' Spacing along column
ref1.PalletMaxIndex(1) = 3 ' Define grid size
ref1.PalletMaxIndex(2) = 3 ' Define grid size

loc1.RefFrame = ref1 ' loc1.PosWrtRef all 0’s
ref1.PalletRowColLay(2,3,1) ' Set grid position
Console.Writeline(loc1.Pos.X) ' Displays 110
Console.Writeline(loc1.Pos.Y) ' Displays 90

See Also

RefFrame Class | refframe_object.PalletIndex| refframe_object.PalletMaxIndex|
refframe_object.PalletNextPos

GPL Dictionary Pages

282

refframe_object.Pos Method

Returns a Cartesian Location equal to the current total position and orientation for any
type of RefFrame Object.

… refframe_object.Pos(location_object)

Prerequisites

None

Parameters

location_object

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location whose
value is equal to the current (instantaneous) total position and orientation of the frame
taking into account any additional linked reference frames. In the case of a “basic”
reference frame, the current location is equal to the contents of refframe_object.Loc.Pos.
In the case of a dynamic reference frame, such as a pallet, the current total position and
orientation is computed based upon the object properties, e.g. nominal location, current
row, column and layer numbers.

This method returns the reference frame’s total position and orientation that is equivalent
to the value used to compute the total position and orientation of a Cartesian Location
that is defined with respect to the reference frame. For example, if a Cartesian Location,
loc1, has its RefFrame pointer set equal to a reference frame, ref1, then loc1.Pos is
equal to:

ref1.Pos(dummy).Mul(loc1.PosWrtRef)

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.Pos(dum).X) ' Displays 100
Console.Writeline(ref1.Pos(dum).Y) ' Displays 90
Console.Writeline(ref1.Pos(dum).Z) ' Displays -80

See Also

RefFrame Class | refframe_object.PosWrtRef

Reference Frame Class

283

refframe_object.PosWrtRef Method

Returns a Cartesian Location equal to the current position and orientation for any type of
RefFrame Object ignoring any further reference frames.

… refframe_object.PosWrtRef(location_object)

Prerequisites

None

Parameters

location_object

A required Cartesian Location Object or a method or property that
returns a Cartesian Location Object value. This parameter is not
currently utilized but is included to support planned future reference
frame types.

Remarks

For any type of reference frame object, this method returns a Cartesian Location whose
value is equal to the current (instantaneous) position and orientation of the frame without
taking into account any additional linked reference frames. In the case of a “basic”
reference frame, the current location is equal to the contents of
refframe_object.Loc.PosWrtRef. In the case of a dynamic reference frame, such as a
pallet, the current position and orientation is computed based upon the object properties,
e.g. nominal location, current row, column and layer numbers.

Examples

Dim ref1 As New RefFrame ' Also allocates Loc
Dim dum As New Location
ref1.Loc.XYZ(100,90,-80,0,0,45) ' Define base frame
Console.Writeline(ref1.PosWrtRef(dum).X) ' Displays 100
Console.Writeline(ref1.PosWrtRef(dum).Y) ' Displays 90
Console.Writeline(ref1.PosWrtRef(dum).Z) ' Displays -80

See Also

RefFrame Class | refframe_object.Pos

GPL Dictionary Pages

284

refframe_object.Type Property

Sets and gets the Integer Type of a RefFrame Object, which indicates if the object is a
basic type or one of the special types of reference frames.

refframe_object.Type = <new_Integer_value>
-or-
...refframe_object.Type

Prerequisites

None

Parameters

None

Remarks

There are several different types of reference frames that can be represented by a
refframe_object. The Type property indicates which type of reference frame is stored in
a specific object. The possible values for the Type property are as follows:

Type Value Description

0 Basic RefFrame that simply stores the position and orientation
of the reference frame in the Loc Location.

1 Pallet RefFrame that defines a one, two or three-dimensional
rectangular grid of positions that are sequentially indexed.

For all reference frames, there are a few common properties that are always defined and
accessible. These common properties include the Type, Loc, Pos and PosWrtRef. In
addition, specific types of reference frames may have additional properties and methods
that are only meaningful for a specific type of refframe_object. For example, a pallet
reference frame has a PalletOrder property that is only relevant for that type of frame.

In general, if you attempt to access a property that is not relevant for a refframe_object,
an error will be generated.

When a “New” RefFrame is created, its Type is automatically set to 0, i.e. the basic type.

Examples

Dim ref1 As New RefFrame ' Create new reference frame
Dim iType As Integer
iType = ref1.Type ' iType will be set to 0

See Also

Reference Frame Class

285

RefFrame Class

286

Robot Class
Robot Class Summary

The following pages provide detailed information on the properties and methods of the
global Robot Class. This class provides access to the features and status of each robot
configured in the system, e.g. the current position of a robot, processes for establishing
the position reference for each axes of each robot, functions for forcing an in-process
motion to decelerate to a halt, methods for setting and getting the robot's base and tool
offsets, etc.

The most important operations of the Robot Class are to associate a specific robot with
a specific thread and to grant exclusive control of a robot to a thread. Most read-only
robot operations require that a statement either explicitly specify a robot or have a
previously Selected robot. For example, to read the current position of a robot, the
Selected robot will be accessed if no robot is specified. More importantly, in order to
control or move a robot, a thread must first be Attached to a robot in order to gain
exclusive access to it.

As is standard in GPL, conversions between different arithmetic types, e.g. Integer,
Single, Double, are automatically performed as required. So, for numeric properties and
methods of the Robot Class, it is not necessary to have different variations of these
members to deal with the different possible mixes of input parameter data types. Also, as
appropriate, the properties and methods generally produce results that are formatted as
Double’s. These results will automatically be converted to smaller data types as
necessary, e.g. Double -> Integer, and will not generate an error so long as numeric
overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Robot.Attached Property
Sets and gets the number of the robot that is
exclusively controlled by a thread.

Robot.Base Property
Sets and gets the position and orientation
offset for the base of the robot.

Robot.Custom Property
Sets and gets elements of a parameter array
whose interpretation is specific to each
kinematic module.

Robot.DefLinComp Method

Defines internal table of motor encoder
"Linearity compensation" correction values
that are automatically applied to encoder
values.

Robot.Dest Property
Returns a Cartesian Location whose value is
equal to the originally planned final destination
of the previously executed motion.

Robot.DestAngles Property
Returns an Angles Location whose value is
equal to the originally planned final destination
of the previously executed motion.

Robot.Home Method
Homes the Attached robot to establish the
reference positions for each axes.

Robot Class

287

Robot.HomeAll Method Homes all robots to establish the reference
positions for each of their axes.

Robot.LastProfile Property

Returns a Profile Object whose properties
are equal to those of the currently executing
motion or the last executed motion if no
motion is active.

Robot.RapidDecel Property
Sets the Boolean flag that forces any in-
process motion for a robot to be rapidly
decelerated to a stop.

Robot.RestartBase Property
Gets the position and orientation offset for the
base of the robot that was set when the
controller was restarted.

Robot.RestartTool Property
Gets the position and orientation offset for the
tool or gripper of the robot that was set when
the controller was restarted.

Robot.Selected Property
Sets and gets the default robot number to be
used when accessing a specific robot.

Robot.Source Property
Returns a Cartesian Location whose value is
equal to the initial position and orientation of
the previously executed motion.

Robot.SourceAngles Property
Returns an Angles Location whose value is
equal to the initial axes positions of the
previously executed motion.

Robot.Tool Property
Sets and gets the position and orientation
offset for the tool or gripper of the robot.

Robot.TrajState Property
Gets an Integer that indicates the current
state of the Trajectory Generator for a given
robot.

Robot.Where Property
Gets a Cartesian Location whose value
indicates the current position and orientation
of a robot.

Robot.WhereAngles Property
Gets an Angles Location whose value
indicates the current position of each axes of a
robot.

GPL Dictionary Pages

288

Robot.Attached Property

Sets and gets the number of the robot that is exclusively controlled by a thread.

Robot.Attached = <robot_number>
-or-
... Robot.Attached

Prerequisites

None

Parameters

None

Remarks

In order to ensure that a robot receives a consistent set of motion commands, a robot
must be Attached before any motion commands can be issued by a thread and only a
single thread can be Attached to a robot at any given time.

While a robot is Attached by a thread, other threads are still permitted to read certain
properties of the robot, such as the current robot position and trajectory state. Also, other
threads are able to alter the robots operation in ways that make sense. For example, any
thread can disable high power, signal a Soft or Hard E-Stop, or force a robot to rapidly
decelerate.

The Attached robot number is an Integer that ranges from 1 to N. If the Attached
property is set to 0, any robot attached to the thread is released (un-Attached).

When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Typically, if a project is intended to control a robot, the GPL software development
environment can be configured to automatically generate the statements to ensure the
robot will be Attached at the start of program execution and un-Attached when the
program is terminated or pauses execution.

Examples

Robot.Attached = 1 ' We now have exclusive control of robot #1
Robot.Attached = 0 ' This is how you give up control

See Also

Robot Class | Robot .Selected

Robot Class

289

Robot.Base Property

Sets and gets the position and orientation offset for the base of the robot.

Robot.Base = <Cartesian_location>
-or-
... Robot.Base (robot)

Prerequisites

 For the set operation, the robot must be attached to the current thread.
 For the set operation, the Location must be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the base of the robot to the origin of
the World coordinate system.

The Base definition is beneficial if you create an application using Cartesian Locations
and the base of the robot is subsequently shifted slightly. By adjusting the position of the
Base definition, a project can automatically correct all of the joint angle positions that will
be computed from Cartesian Locations.

For computational reasons, some robot kinematic modules may not support the Base
property. Also, as a computational efficiency, the value of Base can only contain a
positional offset in X, Y, and Z and a rotation about the Z-axis. That is, the Euler angles
for the Base must always be "X,Y,Z,Yaw,0,0".

For most applications, the Base value is not used and its value is set to "0,0,0,0,0,0".

Once the Robot.Base has been set, these dimensions remain in effect until the Base
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Base " definition is automatically put into effect
based upon the values of "Base set at restart" (DataID 16052).

Changing the robot's Base instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts
to set the Base, GPL automatically waits until the motion is completed before executing
this instruction.

GPL Dictionary Pages

290

Examples

Dim base As New Location
Robot.Attached = 1
base.XYZ(10, 0, 0) ' Move base by 10mm in X
Robot.Base = base
Console.WriteLine(Robot.Base().X) ' Outputs a value of 10

See Also

Robot Class | Robot.RestartBase

Robot Class

291

Robot.Custom Property

Sets and gets elements of a parameter array whose interpretation is specific to each
kinematic module.

Robot.Custom (index) = <New_value>
-or-
... Robot.Custom (robot, index)

Prerequisites


 For the set operation, the robot must be attached to the current thread.
 For kinematic modules that do not use the array of custom kinematic parameters,

setting or reading these parameters has no effect on the operation of the associated
robot.

Parameters

index

An optional numeric expression that specifies the element of the custom
kinematic parameter array (1-5) that is accessed. If this value is 1 or
unspecified, the first element will be accessed.

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Selected kinematic modules have special runtime parameters that alter their behavior in
a non-standard fashion. For example, the "Dual RPR" robot has two arms and two sets
of grippers that can be moved. At any given time, only one of the arms and one of the
grippers can be factored into the computation of the Cartesian position and orientation of
the robot. The "custom kinematic parameters" are utilized by this kinematic module at
runtime to specify which of the two arms is logically considered part of the robot.

In some instances, setting a parameter may cause the executing thread to pause waiting
for the attached robot to complete its current motion. This side effect and other similar
actions are controlled by the specific kinematic module type.

For a description of how these parameters are utilized in a specific robot and their side
effects, please consult the documentation on the Kinematic Robot Modules.

Examples

GPL Dictionary Pages

292

Robot.Attached = 1
Robot.Custom(1) = 1 ' Set custom parameter value

See Also

Robot Class

Robot Class

293

Robot.DefLinComp Method

Defines internal table of motor encoder "Linearity compensation" correction values that
are automatically applied to encoder values.

Robot.DefLinComp (robot, motor, enc_start, enc_step, num_cor, cor)

Prerequisites

 Motor linear compensation must be permitted for the robot.
 Motor linear compensation must be enabled.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

motor

A required numeric expression that specifies the motor to compensate
(1-n).

enc_start

A required numeric expression that specifies the first (and lowest)
encoder count to be corrected.

enc_step

A required numeric expression that specifies the step size in encoder
counts between successive encoder correction values. Must be greater
than 0 and can be a fractional value.

num_cor

A required numeric expression that specifies the number of encoder
correction values that are defined in the cor array (1-n). The number of
values is only limited by the available system memory. Increasing the
number of correction values and decreasing the step size improves the
compensation and only effects memory, not execution time.

cor

A required array of double precision values that specifies the correction
in encoder counts at each sequential encoder position. The corrections
can include fractional encoder counts. Positive values indicate that the

GPL Dictionary Pages

294

encoder should be reading a higher value and negative numbers indicate
the encoder reading should be lower.

Remarks

This method creates and defines an internal table of encoder correction values for the
specified motor of a robot. These corrections are automatically applied to each motor
command and to each encoder reading. This technique permits repeatable position
errors to be corrected to yield more linear and accurate axis positioning. In between
correction values, the corrections are interpolated. Outside of the correction range, the
raw encoder value is utilized.

As soon as this method creates and initializes the correction data, it is immediately put
into effect.

As a convenience, this instruction can be executed even when robot power is enabled.
So long as the corrections are small, this will result in a small instantaneous motion of the
motor.

WARNING: When first trying a new compensation data set, motor
power should be disabled to avoid any sudden, high speed motor
motions.

Correction data sets can be created for any motor of the robot that you wish to
compensate. It is not necessary to create a correction table for all motors. Correction
tables stay in effect until they are over-written or the controller is restarted.

Please see the "Motor Linearity Compensation" section in the Controller Software >
Software Setup > Selected Setup Details and Procedures chapter of the Precise
Documentation Library for information on creating correction data sets and for more
information on this technique.

Examples

Dim cor(2) As Double
cor(0) = 0
cor(1) = -18 ' First step is too short
cor(2) = 5.3 ' Second step is too long
Robot.DefLinComp(1, 1, 5000, 1000, 3, cor)

See Also

Robot Class

Robot Class

295

Robot.Dest Property

Returns a Cartesian Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.Dest (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation that was
originally planned as the final destination for the previously executed motion. The
previously executed motion can still be in progress or could have already stopped
executing when this property is accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the Dest Location is not the same as
performing a Move.Rel instruction. The Move.Rel instruction will perform a incremental
motion relative to wherever the robot's final position was at the conclusion of the previous
motion. Moving relative to the Dest Location moves with respect to where the previous
motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to planned Cartesian position and orientation
destination of the previous motion.

RefFrame Always Null

Config Configuration bits for the planned destination of the previous
motion.

ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

GPL Dictionary Pages

296

Examples

Dim DestLoc As Location
DestLoc = Robot.Dest() ' Reads planned motion destination

See Also

Robot Class | Robot.DestAngles | Robot.LastProfile | Robot.Source | Robot.SourceAngles

Robot Class

297

Robot.DestAngles Property

Returns an Angles Location whose value is equal to the originally planned final
destination of the previously executed motion.

...Robot.DestAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that were originally planned as
the final destination for the previously executed motion. The previously executed motion
can still be in progress or could have already stopped executing when this property is
accessed.

This information is useful since it is not altered even if the previous motion was
prematurely terminated due to a RapidDecel, E-Stop, or other condition. Consequently,
this data can be utilized to complete the previous motion.

Note that performing a motion that is relative to the DestAngles Location is not the
same as performing a Move.Rel instruction. The Move.Rel instruction will perform a
incremental motion relative to wherever the robot's final position was at the conclusion of
the previous motion. Moving relative to the DestAngles Location moves with respect to
where the previous motion was planned to terminate.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location

Angles Set equal to planned axes position destinations of the previous
motion.

RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

GPL Dictionary Pages

298

Examples

Dim DestLoc As Location
DestLoc = Robot.DestAngles() ' Reads planned motion destination

See Also

Robot Class | Robot.Dest | Robot.LastProfile | Robot.Source | Robot.SourceAngles

Robot Class

299

Robot.Home Method

Homes the Attached robot to establish the reference positions for each axes.

Robot.Home

Prerequisites

 High power to the robot must be enabled.
 A robot must be Attached by the thread.

Parameters

None

Remarks

This method allows a robot to be homed via a program statement. The homing process
re-establishes the reference (e.g. zero) position for each axis of the robot. This enables
the robot to reliably move to the same positions after each time that the controller is
restarted even when the robot is equipped with incremental, not absolute encoders.

The axes homing sequence must be executed once for each axis after the system is
restarted and prior to executing any position controlled motions. Often, the homing
process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home to
hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot manufacturer.
The Home method simply executes the pre-configured method for the robot Attached to
the thread.

Examples

Robot.Attach(1) ' Attach a robot to the thread
Robot.Home() ' Home the Attached robot

See Also

Robot Class | Robot.HomeAll

GPL Dictionary Pages

300

Robot.HomeAll Method

Homes all robots to establish the reference positions for each of their axes.

Robot.HomeAll

Prerequisites

 High power must be enabled.
 No robot can be Attached by a different thread.

Parameters

None

Remarks

This method allows all robots to be homed via a program statement. This homing
process re-establishes the reference (e.g. zero) position for each axis of each robot. This
enables the robots to reliably move to the same positions after each time that the
controller is restarted even when the robots are equipped with incremental, not absolute
encoders.

The axes homing sequence must be executed once for each axis of each robot after the
system is restarted and prior to executing a robot in position controlled mode. Often, the
homing process is manually initiated via the operator control panel.

There are many different methods that can be employed to home an axis, e.g. home to
hard stop, home to limit switch, home to home switch, etc. The specific method for each
axis and the parameters for each method are pre-configured by the robot manufacturer.
The HomeAll method simply executes the pre-configured method for all robots.

Examples

Robot.HomeAll() ' Execute home sequence for all robots

See Also

Robot Class | Robot.Home

Robot Class

301

Robot.LastProfile Property

Returns a Profile Object whose properties are equal to those of the currently executing
motion or the last executed motion if no motion is active.

...Robot.LastProfile (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property extracts a copy of the motion Profile parameters that were specified for the
currently executing motion of a Robot or the last motion if no motion is now in progress.
The extracted values are returned in a Profile Object.

If the previous motion was interrupted due to an error, this property, in combination with
the Dest or DestAngles properties, is very useful for retrying the motion.

Examples

Dim Profile1 As Profile
Profile1 = Robot.LastProfile() ' Reads last Profile utilized

See Also

Robot Class |Robot.Dest | Robot.DestAngles

GPL Dictionary Pages

302

Robot.RapidDecel Property

Sets the internal Boolean flag that forces any in-process motion for a robot to be rapidly
decelerated to a stop.

Robot.RapidDecel (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

Setting the RapidDecel flag immediately initiates a rapid deceleration of any motion in
progress for the specified robot. At the conclusion of the deceleration, no error is
signaled and program execution continues un-interrupted. The motion will, however,
have been stopped at a location different from the original plan. If the robot was not in
motion, setting this flag is ignored. At the start of the next motion, the RapidDecel flag is
automatically reset.

The RapidDecel feature can be used to stop motions prematurely due to an external
signal, such as tripping a switch, touch sensor, or force sensor. Since these are
expected events, program processing is not halted.

In that this flag stops any in-process motion, it is similar in effect to the Soft E-Stop, Hard
E-Stop, and Disable Power functions. However, those functions are typically used to
stop all robots simultaneously when an unexpected event occurs and they therefore
generate error conditions.

Examples

Robot.RapidDecel() ' Triggers a rapid decel of Selected robot

See Also

Robot Class | Controller.PowerEnabled | Controller.SoftEstop

Robot Class

303

Robot.RestartBase Property

Gets the position and orientation offset for the base of the robot that was set when the
controller was restarted.

... Robot.RestartBase (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the "base" for each robot is
automatically set equal to the position and orientation offset defined by its "Base set at
restart" (DataID 16052) value. Since many applications utilize the same base offset each
day, this ensures that the Base dimensions are correctly set when the system is
restarted.

This property returns a Cartesian Location value that is equal to the Base dimensions
that were set the last time that the system was restarted.

Once set, these Base dimensions can be easily modified using the Robot.Base
property. See that property for additional information on the use and benefits of the Base
property.

Examples

Robot.Attached = 1
Robot.Base = Robot.RestartBase() ' Set base back to default

See Also

Robot Class | Robot.Base

GPL Dictionary Pages

304

Robot.RestartTool Property

Gets the position and orientation offset for the tool or gripper of the robot that was set
when the controller was restarted.

... Robot.RestartTool (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

As a convenience, when the controller is restarted, the tool for each robot is automatically
set equal to the position and orientation offset defined by its "Tool set at restart" (DataID
16051) value. Since many applications utilize the same tool or gripper each day, this
ensures that the Tool dimensions are correctly set when the system is restarted.

This property returns a Cartesian Location value that is equal to the Tool dimensions
that were set the last time that the system was restarted.

Once set, these Tool dimensions can be easily modified using the Robot.Tool property.
See that property for additional information on the use and benefits of the Tool property.

Examples

Robot.Attached = 1
Robot.Tool = Robot.RestartTool() ' Set tool back to default

See Also

Robot Class | Robot.Tool

Robot Class

305

Robot.Selected Property

Sets and gets the default robot number to be used when accessing a specific robot.

Robot.Selected = <robot_number>
-or-
... Robot.Selected

Prerequisites

None

Parameters

None

Remarks

This property allows a thread to set its default robot number. Most of the properties and
methods that reference a robot allow the robot number to be explicitly specified or to be
unspecified and utilize the Selected robot number by default. However, there are some
methods, such as the location_object.Here, that always access the Selected robot.

The Selected robot number is an Integer that ranges from 1 to N.

When a robot is Attached, the system forces the Selected property to be equal to the
Attached value.

Examples

Dim iRobot As Integer
Robot.Selected = 1 ' Robot #1 is now Selected
iRobot = Robot.Selected ' iRobot will be set to 1

See Also

Robot Class | Robot.Attached

GPL Dictionary Pages

306

Robot.Source Property

Returns a Cartesian Location whose value is equal to the starting position and
orientation of the previously executed motion.

...Robot.Source (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the Cartesian position and orientation for the
starting position of the previously executed motion. The previously executed motion can
still be in progress or could have already stopped executing when this property is
accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the Dest Location to
reconstruct the previously planned motion. For example, this is beneficial for moving the
robot's tool back onto the previous path if the previous motion was prematurely
terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location

PosWrtRef Set equal to starting Cartesian position and orientation of the
previous motion.

RefFrame Always Null
Config Configuration bits for the start of the previous motion.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Robot Class

307

Examples

Dim SourceLoc As Location
SourceLoc = Robot.Source() ' Reads starting motion location

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.SourceAngles

GPL Dictionary Pages

308

Robot.SourceAngles Property

Returns an Angles Location whose value is equal to the starting axes positions of the
previously executed motion.

...Robot.SourceAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property can be used for retrieving the axes positions that represent the starting
position of the previously executed motion. The previously executed motion can still be
in progress or could have already stopped executing when this property is accessed.

The value returned by this property does not reflect any blending that may have occurred
if the motion was executed as part of a continuous path. That is, the value returned will
be the same whether or not continuous path was in effect.

This information is very useful when accessed in combination with the DestAngles
Location to reconstruct the previously planned motion. For example, this is beneficial for
moving the robot's axes back onto the previous path if the previous motion was
prematurely terminated via a RapidDecel.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Angles Set equal to initial axes positions of the previous motion.
RefFrame Always Null
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Dim SourceLoc As Location
SourceLoc = Robot.SourceAngles() ' Reads initial motion position

Robot Class

309

See Also

Robot Class | Robot.Dest | Robot.DestAngles | Robot.LastProfile | Robot.Source

GPL Dictionary Pages

310

Robot.Tool Property

Sets and gets the position and orientation offset for the tool or gripper of the robot.

Robot.Tool = <Cartesian_location>
-or-
... Robot.Tool (robot)

Prerequisites

 For the set operation, the robot must either be attached to the current thread or
must not be attached to any thread.

 For the set operation, the Location must be of the Cartesian type.

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property permits a project to either set or retrieve the Cartesian Location Object
that defines the position and orientation offset from the last axis of the robot to the center
point of the robot's gripper (or tool).

The Tool definition is particularly beneficial for robots that can change the orientation of
the gripper. When the tool center point is properly defined and the system is instructed to
move along a straight-line path, the tool center point will move along a straight line even if
the orientation of the gripper is simultaneously changed. Also, in Jog-Tool control mode,
the operator can easily rotate the tool center point while maintaining the same position.

For the majority of simple grippers, the gripper dimensions consist of just an offset along
the Z-axis of the robot with no change in orientation. This corresponds to an Location
XYZ specification of "0,0,tool_length,0,0,0".

Once the Robot.Tool has been set, these dimensions remain in effect until the Tool
property is set again or the controller is powered down and restarted. As a convenience,
when the controller is restarted, a "Restart Tool" definition is automatically put into effect
based upon the values of "Tool set at restart" (DataID 16051).

Changing the Tool dimensions instantaneously changes where the system thinks that the
robot's Cartesian set point is located. So, if the robot is in motion when a thread attempts
to set the Tool, GPL automatically waits until the motion is completed before executing
this instruction.

Examples

Robot Class

311

Dim tool As New Location
Robot.Attached = 1
tool.XYZ(0, 0, 100) ' Simple tool with 100mm length
Robot.Tool = tool
Console.WriteLine(Robot.Tool().Z) ' Outputs a value of 100

See Also

Robot Class | Robot.RestartTool

GPL Dictionary Pages

312

Robot.TrajState Property

Returns an Integer that indicates the current state of the Trajectory Generator for a given
robot.

...Robot.TrajState (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

The Trajectory Generator state defines whether a trajectory is currently being evaluated
for the specified robot and, if so, what portion of the trajectory is being generated. This
value can be utilized to determine if a trajectory is being ramped up to its maximum
speed, being ramped, waiting for final position errors to be nulled, sitting idle, performing
a special control mode, etc.

The possible values returned by this property are presented in the following table:

TrajState Description

0 Halted, Trajectory Generator not being executed and no robot attached

1
Idle, Trajectory Generator ready to service commands but no motion in
progress.

2 Position controlled mode, accelerating up to maximum speed.
3 Position controlled mode, moving at constant velocity.
4 Position controlled mode, blending two motions together.
5 Position controlled mode, decelerating robot to a stop.
8 Velocity controlled mode
9 Special motor speed control mode
10 Jog (manual) control mode
11 External trajectory control, special mode
15 Motion terminated, waiting for final position to satisfy InRange criteria.

Examples

Dim istate As Integer
istate = Robot.TrajState() ' Reads current trajectory state

Robot Class

313

See Also

Robot Class

GPL Dictionary Pages

314

Robot.Where Property

Returns a Cartesian Location whose value is equal to the current position and
orientation of a robot.

...Robot.Where (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current position and orientation of a robot in a Cartesian
Location. This position and orientation automatically take into account both the robot's
Base and Tool offsets.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into an equivalent Cartesian position and
orientation. These sampled values are usually slightly different than the commanded
axes set point positions due to servo tracking errors and small positional errors.

The conversion to Cartesian coordinates make use of the optional Kinematic module for
the selected robot.

Note, if you wish to update the position and orientation of a Location variable, it is often
better to utilize the location_object.Here method rather than simply assigning the Where
Location to the variable. The Here method preserves the other properties of the
Location variable and will automatically take into account any reference frame
(RefFrame).

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Cartesian Location
PosWrtRef Set equal to current Cartesian position and orientation of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Robot Class

315

Examples

Dim RobotPos As Location
RobotPos = Robot.Where() ' Where is the robot right now?

See Also

Robot Class | Robot.WhereAngles | location_object.Here

GPL Dictionary Pages

316

Robot.WhereAngles Property

Returns an Angles Location whose value is equal to the current axes positions of a
robot.

...Robot.WhereAngles (robot)

Prerequisites

None

Parameters

robot

An optional numeric expression that specifies the robot to be accessed
(1-n). If this value is 0 or unspecified, the Selected robot will be
accessed.

Remarks

This property returns the current positions of the axes of a robot in a Angles Location.

The returned value is computed by reading the instantaneous values of each motor's
encoder and converting these values into equivalent axes positions. These sampled
values are usually slightly different than the commanded axes set point positions due to
servo tracking errors and small positional errors.

Note, if you wish to update the position of a Location variable, it is often better to utilize
the location_object.Here method rather than simply assigning the WhereAngles
Location to the variable. The Here method preserves the other properties of the
Location variable.

The following table describes the data returned in the Location value.

Property Returned Location Object value

Type Angles Location
Angles Set equal to current position of each axes of a robot.
RefFrame Always Null
Config Configuration bits for the current robot position and orientation.
ZClearance 1.0e32 to indicate not initialized
All other properties Always zeroed.

Examples

Robot Class

317

Dim RobotPos As Location
RobotPos = Robot.WhereAngles() ' Where is the robot right now?

See Also

Robot Class | Robot.Where | location_object.Here

318

Signal Class
Signal Class Summary

The following pages provide detailed information on the properties and methods of the
global Signal Class. This class provides access to the simple hardware interfacing
features of the Guidance controller, such as the digital and analog input and output (I/O).
These common interfaces allow a GPL program to coordinate its actions with those of
other devices.

Using the digital I/O, programs can employ semaphores to interlock their execution with
other equipment in the work cell such as feeders or processing machines. Using the
analog I/O, programs can sample the values of simple sensors such as force or
temperature sensors to alter the sequence of program execution.

As is standard in GPL, conversions between different arithmetic types, e.g. Boolean,
Integer, Single, Double, are automatically performed as required. So, for numeric
properties and methods of the Signal Class, it is not necessary to have different
variations of these members to deal with the different possible mixes of input parameter
data types. Also, as appropriate, the properties and methods generally produce results
that are formatted as Double’s. These results will automatically be converted to smaller
data types as necessary, e.g. Double -> Integer, and will not generate an error so long
as numeric overflow does not occur.

The table below briefly summarizes the properties and methods that are described in
greater detail in the following sections.

Member Type Description

Signal.AIO Property
Sets and gets the values of the analog input
and output channels.

Signal.DIO Property
Sets and gets the values of the digital input
and output channels.

Signal Class

319

Signal.AIO Property

Sets and gets the values of the analog input and output channels.

Signal.AIO(channel)=<new_value>
-or-
... Signal.AIO(channel)

Prerequisites

None

Parameters

channel

A required numeric expression that specifies the analog channel to be
accessed. The allocated ranges of channel numbers are as follows:

Channel Type Minimum number Max allocated number

Analog outputs 1 10000
Analog inputs 10001 20000

Please consult the hardware specification for your specific version of
controller for information on the maximum number of input and output
channels available on your system.

Only the value of an output channel can be written. The current values of
both input and output channels can be read.

Remarks

At the hardware level, both analog input and analog output signals levels are represented
by integer numbers whose ranges are a function of the specific model of your controller.
To generalize accessing these devices at the GPL level, analog values are represented
by floating point numbers that are scaled, offset, and thresholded relative to the raw
hardware values.

In many systems, analog values are configured to range from either +-1.0 or +-100.
Please consult the personnel who configured your controller for the applicable ranges of
possible analog values.

Examples

Dim sensor_reading As Single
sensor_reading = Signal.AIO(10001) 'Sets sensor_reading equal to the
 'scaled value of the first analog
 'input channel

GPL Dictionary Pages

320

See Also

Signal Class | Signal.DIO

Signal Class

321

Signal.DIO Property

Sets and gets the values of the digital input and output channels.

Signal.DIO(channel, count)=<new_value>
-or-
... Signal.DIO(channel, count)

Prerequisites

None

Parameters

channel

A required numeric expression that specifies the first digital channel to
be accessed. Signal numbers are organized into ranges based on the
signal type. Within those ranges, the signals are organized into banks of
96 I/O points. The bank numbers start at 0. A signal number is formed by
adding the signal base value to 100 times the bank number.

In a distributed servo network, general digital I/O signals on the slave
controllers may be accessed from the master controller by adding
100000 times the slave controller node number to the signal number.

count

An optional numeric expression that specifies the number of successive
digital channels to be accessed. The value may range from 1 to 32. If
omitted, only a single channel is accessed and the property value is a
Boolean.

If specified, the property value is a numeric bit mask. Omitting the count
parameter is not the same as specifying a count of 1.

If multiple channels are specified, all channels within the range signal to
signal+count-1 must be valid.

Remarks

When specifying DIO signal (channel) numbers, a positive base signal number indicates
that the signal is True if its logical level is high. A negative base signal number indicates
that the signal is True if its logical level is low. For example, if the channel is 10001, the
signal is True if the input is at a logic high level. If the channel is –10001, the signal is
True if the input is at a logic low level.

Only an output DIO signal can be written. The current values of both input and output
signals can be read.

GPL Dictionary Pages

322

If count is specified, the DIO specified by channel corresponds to bit 0 of the property
value. channel+1 corresponds to bit 1, channel+n corresponds to bit n, where n < count.

The table below shows the possible signal numbers based on the type and the bank.

Signal Type Signal Base Signal Range Banks

Test 0 0

General
outputs 1

1 + 100*bank
96 + 100*bank

0 = Local outputs,
1-15 = Remote outputs on RIO
or MODBUS/TCP modules.

Dedicated
outputs 8001

8001 + 100*bank
8096 + 100*bank

0 = Controller outputs,
1-15 = axis outputs.

General
inputs 10001

10001 + 100*bank
10096 + 100*bank

0 = Local inputs,
1-15 = Remote inputs on RIO or
MODBUS/TCP modules.

Dedicated
inputs 18001

18001 + 100*bank
18096 + 100*bank

0 = Controller inputs,
1-15 = axis inputs.

Software I/O 20001 20001 - 20064 Not used
Reserved 21001 21001 - 100000

Servo Network
node n general

outputs
100000*n + 13 100000*n + 20 0 = Local outputs only

Servo Network
node n general

inputs
100000*n + 10001 100000*n + 10012 0 = Local inputs only

The following describes the different type of digital IO signals:

DIO Type Description

Test Channel 0 is a special test value that always reads False no matter
what value is written to it.

General These are the “user” DIO signals that are provided in the controller or
remote I/O boards. They do not have a predefined use and can be
freely employed. In some cases, general DIO may be configured to
serve as dedicated IO. For example, a general DIO can be
configured as a joint over-travel limit.

Dedicated The dedicated DIO are pre-defined to fixed machine control functions
such as a home sensor. Some of these signals are assigned to
specific pins. However, others can be mapped to General DIO pins.

Software These “soft” IO do not drive or read actual hardware output or input
signals. They can be used as semaphores between threads or in
place of hardware DIO for testing control algorithms.

Please consult the hardware specification for your specific version of controller for
information on the maximum number of input and output channels of each type available
on your system.

Examples

Dim semaphore As Boolean

Signal Class

323

Signal.DIO(20001) = True ' Sets soft signal 20001 to True
semaphore = Signal.DIO(-20001) ' Will set semaphore value to False
Signal.DIO (20001) = 4 ' Sets soft signal 20001 to True
 ' since 4 is non-zero.
Signal.DIO (20001, 1) = 4 ' Sets soft signal 20001 to False
Signal.DIO (20001, 3) = 4 ' Sets soft signal 20001 to False
 ' and soft signal 20002 to False
 ' and soft signal 20003 to True

See Also

Signal Class | Signal.AIO

324

Statements
Statements Summary

The following pages provide detailed information on the basic statements that are
provided as an integral portion of the Guidance Programming Language. These
statements provide standard functionality found in any programming language such as
control structures, variable declarations, subroutine and function calls, etc. As much as
possible, these statements have been modeled after standard instructions provide by
other variants of the Basic Programming Language.

The table below briefly summarizes the statements that are described in greater detail in
the following sections.

Statement Description

Call Transfers control to a procedure and ignores its return value.
Class Begins a Class definition.
Const Declares a read-only variable for use in a procedure.
Dim Declares a variable for use in a procedure.

Do...Loop
Bounds a block of instructions that are repeatedly executed so
long as a specified expression evaluates to True or until the
expression value becomes True.

Else, ElseIf Used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.

End Marks the end of a control structure or major project element
such as a program or function.

Exit Terminates the execution of a block of instructions within the
innermost control structure of a specified type or a procedure.

For...Next Bounds a block of instructions that are repeatedly executed a
specified number of times.

Function Begins a user-defined function procedure.

Get Begins a Get procedure block within a Property procedure
definition.

Goto Performs an unconditional branch and continues execution at a
specified labeled instruction.

If...Then...Else...End Conditionally executes a block of embedded statements based upon the
value of an expression.

Loop Marks the end of a Do…Loop block of instructions and in some
instances also specifies the loop termination condition.

Module Begins a user-defined module section. All variable defintions and
procedures must be inside a Module or Class definition.

Next Marks the end of a For…Next block of instructions.

Property Begins a user-defined Property procedure.

ReDim Increases or decreases an array size by changing the array's upper
bounds.

Return Causes a user-define procedure to return control to the calling
procedure and optionally return a value.

Set Begins a Set procedure block within a Property procedure definition.

Sub Begins a user-defined subroutine procedure.

While...End While Bounds a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

Statements

325

Call Statement

This statement transfers control to procedure, and ignores its return value.

Call procedure_name([argument_list])
-or-
Call class_name.procedure_name([argument_list])
-or-
Call object_name.procedure_name([argument_list])

Prerequisites

None

Parameters

procedure_name

The name of procedure to be called. This procedure can be either user-
defined or built-in. It can be a function (Function), a subroutine(Sub) or a
method of a built-in class.

class_name

The name of a built-in class of which procedure_name is a member.

object_name

The name of a object that is an instance of a built-in class of which
procedure_name is a member

argument_list

A list of argument values that are passed to the procedure. The
argument_list may be empty, or may be a list of argument values,
separated by “,”, that correspond to the arguments in the called
procedure.

argument, argument, argument

The type and number of arguments must match the parameters in the
declaration of the called procedure. For a ByVal parameter, the
argument can be any expression of the matching type. For a ByRef
parameter, the argument must be a variable of the matching type.

Remarks

GPL Dictionary Pages

326

When a procedure is called, the current procedure is suspended until the called
procedure exits. Some procedures (e.g. Function procedures) can return a value. The
Call statement does not allow the returned value to be accessed.

The Call statement is optional. It can be omitted and the procedure_name specified as
the first item in the statement.

Examples

Call my_subroutine(10, 20, 30)
my_subroutine(10, 20, 30) ' Same as above
Call Move.OneAxis(1, 30, 0, MyProfile)

See Also

Statements | Function Statements | Sub Statements

Statements

327

Class Statement

This statement begins a Class definition.

[Public | Private] Class class_name

Prerequisites

A Class may only be declared at the top level of a file, within a Module, or within another
Class.

Parameters

class_name

The name of the Class being defined.

Remarks

A Class definition must always end with an End Class statement.

If a Class is declared Public, it can be accessed from outside the Module or Class in
which it is defined. A Private Class can only be accessed within the Module or Class
where it is defined. If the Public attribute is omitted, the Class defaults to Private.

Other attributes such as Friend or Protected are not supported.

Variables, constants, and procedures defined within the Class are members of the Class
and can only be accessed by first specifying the Class or an object of the Class.

Examples

Public Class cc ' Begin the class
 Public x As Single ' Variable x is in cc object
 Public y As Single ' Variable y is in cc object
End Class

Sub test
 Dim obj As New cc ' Create object of class cc
 obj.x = 2.5 ' Set x value in new object
End Sub

See Also

Statements | Module Statement

GPL Dictionary Pages

328

Const Statement

This statement declares a read-only variable for use in a procedure. Use the Dim
statement for normal read-write variables.

Const variable_name As type = init
-or-
Const variable_name As type = init, variable_name As type = init, ...

Prerequisites

A Const statement can only appear inside a procedure or a module.

Parameters

variable_name

The name of the variable to be declared as a constant.

type

The type to be assigned to this variable. The type must be a primitive
type.
The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

init

An expression that specifies the initial value for the new variable. It must
have a constant value.

Remarks

Only the Const statement can set the value of this variable. Everywhere else, an error
occurs if an attempt is made to modify the vlaue.

Examples

Const ii As Integer = 10
Const ii As Integer = 10, x As Double = 2.5

See Also

Statements | Dim statements | ReDim statements

Statements

329

Dim Statement

This statement declares a variable for use in a class or procedure.

[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init]
-or-
[Public | Private | Shared] Dim variable_name [, variable_name …] As [New] type [=
[New] init], variable_name [, variable_name …] As [New] type [= [New] init], …

Prerequisites

 A Dim statement can only appear inside a class, procedure or a module.
 The Public and Private keywords cannot be used inside a procedure.
 The Shared keyword cannot be used at the module level.

Parameters

variable_name

The name of the variable to be declared.

In addition to the name, this field may include an array specification of
the form: variable_name(dim_1 [, dim_2 …]), where dim_1 through
dim_4 may be blank or contain an Integer constant defining the
maximum index of the corresponding array dimension. GPL allows up to
four dimensions.

type

The type to be assigned to this variable. The type may be a primitive
type, the name of a built-in class, or the name of a user-defined class.
The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the variable becomes an object variable.

init

An expression that specifies the initial value for the new variable. It does
not need to be a constant.

Remarks

If the Public or Private keywords are present, the Dim keyword may be omitted.

If the Shared keyword is specified, only a single copy of this variable is created. It exists
for all threads and persists even after the procedure in which is was defined has exited.

GPL Dictionary Pages

330

All variables declared at the module level are implicitly shared, even though the Shared
keyword is not allowed.

Shared variables within a procedure can only be accessed from within that procedure,
but their values persist and may be accessed by a subsequent procedure call.

If the Shared keyword is not specified on a Dim statement within a procedure, the
variable exists only within that procedure, and it is initialized each time the procedure
runs.

If the Shared keyword is not specified on a Dim statement within a class definition, a
separate copy of the variable exists in each object of that class type.

If more than one variable_name field is specified, no init clause may be specified.

The New clause can only be specified for objects. If a New keyword is specified
immediately following the As keyword, no initializer value may be specified.

If no init clause is specified, the default value for numeric variables is zero, and for object
variables is Nothing.

If an init clause is specified for a Shared variable, the initialization takes place once when
the main thread begins execution. If an init clause is specified for a non Shared variable,
the initialization takes place each time the defining procedure is executed, or each time a
new object of the class is created.

Examples

Dim ii As Integer
Dim ii As Integer = 10
Public ii As Integer = 10
Shared Dim count As Integer
Dim ii, jj As Integer, x As Double
Dim ii As Integer = 10, x As Double = 2.5
Dim start As Location
Dim start As New Location

See Also

Statements | Const Statement | ReDim Statement

Statements

331

Do...Loop Statements

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True or until the expression value becomes True.

Do While condition
 [statements]
Loop

-or-

Do Until condition
 [statements]
Loop

-or-

Do
 [statements]
Loop While condition

-or-

Do
 [statements]
Loop Until condition

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are repeatedly executed
within the control structure.

Remarks

This control structure either tests a condition at the start or the end of a block of
statements and repeatedly executes the statements so long as the condition is True or
until it becomes True. It can be used to implement program instruction loops.

GPL Dictionary Pages

332

For the Do While and Do Until forms of this control structure, the condition test is
performed prior to the execution of the statements. If the condition permits the loop to be
executed, the statements will be executed once. At the conclusion of the loop, the test is
repeated to determine if the statements should be executed again. So long as the
condition permits execution, the statements will be repeatedly executed. If not, execution
of the statements is terminated. In any case, if the condition does not permit the
execution of the loop on the first test, the statements are never executed.

In contrast, for the Loop While or Loop Until forms of this control structure, the
statements will always be executed at least one time. For these forms, the test is
performed at the conclusion of the execution of the statements. So long as the condition
permits execution, the statements will be repeated executed. However, if the condition
does not permit the execution of the loop on the first test, the statements will still have
been executed one time.

For all forms of this control structure, when the condition test is not satisfied, program
execution continues at the first statement following the Loop instruction.

If the While form of the condition test is specified, the condition is satisfied and execution
of the statements is permitted so long as the value of the condition is True. For the Until
form of the condition test, the condition is satisfied and execution is permitted until the
condition becomes True.

For more complex logic, multiple Do… Loop sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a Do…
Loop can contain an If…Then…End If sequence which can in turn contain a
While…End While sequence.

Execution of the Do loop can be terminated by a number of different methods: the
condition can be set to a value that does not satisfied the test; execution can be explicitly
transferred to an instruction outside of the loop, e.g. by the execution of a GoTo
instruction; or an Exit Do instruction can be executed.

When an Exit Do statement is encountered, execution of the innermost Do…Loop
sequence is immediately terminated and execution continues at the instruction following
the Loop statement. There can be none or several Exit Do statements within each Do
loop.

Examples

Dim count As Integer
count = 10
Do ' Embedded statements always execute at least once
 If count = 5 Then
 Exit Do ' Prematurely stops Do loop
 End If
 count -= 1 ' Same as “count = count-1”
Loop Until count <= 0

See Also

Statements | For…Next Statements | GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

Statements

333

Else, ElseIF Statements

These instructions are used within an If…Then…Else…End If series of statements to
conditionally execute alternative blocks of instructions.

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Prerequisites

Can only be specified within an If…Then…End If series of statements.

Remarks

Please see the documentation on the If…Then…Else…End If Statements for an
explanation on the use of the Else and ElseIf instructions.

See Also

Statements | If…Then…Else…End If Statement

GPL Dictionary Pages

334

End Statements

These statements mark the end of control structures and major project elements such as
procedures or modules.

End Class
-or-
End Function
-or-
End Get
-or-
End If
-or-
End Module
-or-
End Property
-or-
End Set
-or-
End Sub
-or-
End While

Prerequisites

Must always follow and match the type of control structure or procedure that is
referenced.

Remarks

Each of the forms of the End statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the related statements
and program elements for information on the End statements, e.g. see the While…End
While Statements for information on the End While and see Sub for information on End
Sub.

See Also

Statements | Function Statement | If…Then…Else…End If Statements | Module Statement | Sub
Statement | While…End While Statements

Statements

335

Exit Statements

These statements terminate the execution of a block of instructions within the innermost
control structure of a specified type or a procedure. Execution is continued after the end
of the control structure or the call to the procedure.

Exit Do
-or-
Exit For
-or-
Exit Function
-or-
Exit Property
-or-
Exit Sub
-or-
Exit While

Prerequisites

Can only be specified within the control structure or procedure type that is referenced.

Remarks

Each of the forms of the Exit statement are qualified by the type of control structure or
procedure being terminated. Please see the documentation on the specific statements
and program elements for information on the Exit statements, e.g. see the While…End
While Statements for information on the use of Exit While and Sub for the use of Exit
Sub.

See Also

Statements | Do… Loop Statements | For…Next Statements | While…End While Statements

GPL Dictionary Pages

336

For...Next Statements

These instructions bound a block of instructions that are repeatedly executed a specified
number of times.

For variable = initial_value To final_value Step increment
 [statements]
Next variable2

Prerequisites

None

Parameters

variable

Required control variable that is incremented each loop and whose value
determines when looping is to be terminated. The variable can be any
numeric type, i.e.. Byte, Integer, Short, Single or Double. Array
variables as well as object and structure fields are also permitted.
However, object and structure properties are not permitted.

initial_value

Required expression that is evaluated once when the For loop is first
entered. The variable is set to this initial_value and has this value at the
start of the first pass through the execution of the statements.

final_value

Required expression whose value is tested against the variable to
determine when loop execution is to terminate. This expression is
evaluated once when the For statement is executed and its value is
saved for subsequent tests by the Next statement. Therefore, this value
will not change once the For loop is entered.

increment

Optional expression that determines the amount by which the variable is
changed each loop and also whether the variable is tested for being
greater than or less than the final_value as the termination condition.
This expression is evaluated once when the For statement is executed
and its value is saved for subsequent tests by the Next statement.
Therefore, this value will not change once the For loop is entered. If this
expression is not specified, a step of 1 is assumed.

Statements

337

statements

Optional statement or list of statements that are repeatedly executed
during each For loop.

variable2

Optional control variable, which if specified, must exactly match the
control variable in the matching For statement. This is only used when
the program is compiled (and not at runtime) to ensure that the Next and
For statements match.

Remarks

This control structure loops and repeatedly executes the statements a specified number
of times (iterations). It can be used to implement program instruction loops and is
generally more efficient that the other means of looping.

The For statement begins execution by evaluating its arguments and saving their values
for future potential use by the matching Next statement. It then sets the value of the
control variable equal to the initial_value. If the variable’s value does not exceed the
final_value, then the statements are executed for the first time. If the variable’s value
does exceed the final_value, the statements are skipped and execution continues at the
first statement beyond the matching Next.

If the statements are executed, execution proceeds until the Next instruction is
encounter. When the Next statement is executed, the increment is added to the variable
and its value is compared again to the final_value. So long as the final_value is not
exceeded, the for_loop_statements are executed again and the process is repeated.
Otherwise, execution continues at the statement following the Next.

If the increment is a positive number, looping terminates when the variable’s value is
greater than the final_value. If negative, looping terminates when the variable’s value is
less than the final_value.

For more complex logic, multiple For…Next sequences can be nested to an arbitrary
depth and can be combined with other nested control structures. For example, a For loop
can contain an If…Then…End If sequence which can in turn contain another For…Next
sequence.

Execution of the For loop can be terminated by a number of different methods: the
variable’s value can exceed the final_value; execution can be explicitly transferred to an
instruction outside of the loop, e.g. by the execution of a GoTo instruction; or an Exit For
instruction can be executed.

When an Exit For statement is encountered, execution of the innermost For…Next
sequence is immediately terminated and execution continues at the instruction following
the Next. There can be none or several Exit For statements within each For loop.

Examples

Dim count As Integer
For count = 1 To 10 ' Plan to execute 10 loops

GPL Dictionary Pages

338

 If count = 5 Then
 Exit For ' Prematurely stops For on 5 th loop
 End If
Next count ' count is optional in the Next

See Also

Statements | Do… Loop Statements| GoTo Statements | If…Then…Else…End If Statements |
While…End While Statements

Statements

339

Function Statement

This statement begins a user-defined function procedure. It specifies the function return
data type and any parameters that are passed when it is called.

[Public | Private | Shared] Function function_name([parameter_list]) As type

Prerequisites

 Procedures cannot be declared inside of other procedures.
 Procedures can only be declared within modules or classes.

Parameters

function_name

The name of function to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the function has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_name As type

parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

GPL Dictionary Pages

340

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the called
routine can always change an object value, even when passed using a ByVal
parameter.

type

The type of the value returned by this function. The type may be a
primitive type, the name of a built-in class, or the name of a user-defined
class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

A Function procedure returns a value that can be used within an expression where a
value of the proper type is allowed. A Function can also be used with a Call statement or
by itself as a statement when the returned value is not needed.

A Function definition must always end with an End Function statement.

A Function procedure exits when it encounters the End Function statement, an Exit
Function statement, or a Return statement.

The returned value of function is specified by assigning a value to a variable named
function_name, or by a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
Function is associated with the entire class rather than with a particular object of that
class type.

Examples

Function add_function (x As Integer, y As Integer) As Integer
 add_function = x+y
End Function

a = add_function(4, 5) * 2 ' Variable a gets value 18

See Also

Statements

341

Statements | End Function Statement | Exit Function Statement | Return Statement | Sub Statement

GPL Dictionary Pages

342

Get Statement

This statement begins a Get procedure block within a Property procedure definition.

Get

Prerequisites


 This statement can only appear within a Property definition.
 The Property definition that contains this statement must not specify the WriteOnly

attribute.

Parameters

None

Remarks

The Get procedure block must always end with an End Get statement.

When a procedure gets the containing Property, the Get procedure is executed. It is up
to that procedure to retrieve or compute the property value and return it.

The returned value of the Property is specified by assigning a value to a variable with the
same name as the Property or by a Return statement.

Examples

Class cc
 Private sizex2 As Integer = 44

 Public ReadOnly Property size As Integer
 Get
 Return sizex2/2
 End Get
 End Property

End Class
 :
Dim obj As New cc
Console.WriteLine(obj.size) ' Displays value 22

See Also

Statements | Property Statement | Set Statement

Statements

343

GoTo Statement

This statement performs an unconditional branch and continues execution at a specified
labeled instruction.

GoTo label

Prerequisites

None

Parameters

label

Required program instruction label. A label must conform to the naming
conventions for either be a valid variable name (e.g. label3) or an integer
literal (e.g. 1000).

Remarks

This instruction alters the sequence of program statement execution by setting the
label’ed statement as the next instruction to be executed.

The referenced label’ed instruction must be in the same procedure as the GoTo
instruction and can be on an instruction before or after the GoTo instruction. You should
not use a GoTo to jump from the outside of a control structure (e.g. a For…Next or
If…Then…Else…End If) to within a control structure.

To label an instruction, specify the label name followed by a colon (:) followed by any
standard instruction.

In general, GoTo instructions can make code difficult to read and debug. So, wherever
possible software should be written to make use of the other control structures, e.g.
If…Then…Else…End If, While…End While.

Examples

Dim too_big As Boolean, angle As Single
too_big = False
angle = 175.5
If angle > 360 Or angle < -360 Then
 too_big = True
 GoTo Error_Exit ' An Else clause would be better,
End If ' but this shows how to use GoTo
 my_routine(angle)

Error_Exit:

See Also

GPL Dictionary Pages

344

Statements | Do… Loop Statements | For…Next Statements | If…Then…Else…End If Statements |
While…End While Statements

Statements

345

If..Then...Else...End If Statements

A series of statements that conditionally execute a block of embedded statements based
upon the value of an expression.

If condition Then
 [statements]
[ElseIf elseif_condition Then
 [elseif_statements]]
 :
[ElseIf elseif_condition Then
 [elseif_statements]]
[Else
 [else_statements]]
End If

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are executed if the condition
evaluates to True.

elseif_condition

Expression that is required if an optional ElseIf clause is specified. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

elseif_statements

Optional statement or list of statements that are executed if the
associated elseif_condition evaluates to True.

else_statements

GPL Dictionary Pages

346

Optional statement or list of statements that are executed if the Else
clause is present and the preceeding condition and elseif_condition
values all test False.

Remarks

This control structure tests one or more expressions and conditionally executes at most
one block of statements. It can be used to implement simple “either-or” types logic or
more complex decisions based upon multiple conditions with multiple possible outcomes.

The If…Then statement begins by first testing the value of the condition. If the condition
is True, the statements are executed, after which, all of the following program instructions
are skipped until the closing End If is encountered. If the condition is False, the
statements are skipped and processing continues at the first ElseIf, Else, or End If
clause that follows the statements. Any condition that evaluates to <>0 will be interpreted
as a True value.

An arbitrary number of ElseIf clauses can optionally follow the statements and precede
the Else. If the condition is False, the first ElseIf clause is processed by evaluating its
elseif_condition. If its elseif_condition is True, its elseif_statements are executed after
which all of the following program instructions are skipped until the closing End If is
encountered. If its elseif_condition is False, its elseif_statements are skipped and
processing continues at the next ElseIf, Else, or End If clause that follows the
elseif_statements.

An If…Then group of statements can contain a single optional Else statement. If the
condition and all optional elseif_conditions have tested false, the optional
else_statements will be executed.

For more complex logic, multiple If…Then…End If statements can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
For loop can contain an If…Then…End If sequence which can in turn contain another
If…Then…End If sequence.

As an alternative to the multi-line If…Then…End If format, for simple cases, this
conditional statement can be written all on a single line. In this format, the closing End If
is not specified.

Examples

Dim a As Boolean, b As Integer, c As Single
a = True
b = 20
If a AND (b > 10) Then ' This condition evaluates to True
 c = 3.14159 ' This assignment will be executed
Else
 c = 0 ' This assignment will be skipped
End If

See Also

Statements | Do… Loop Statements | For…Next Statements | GoTo Statements | While…End While
Statements

Statements

347

Loop Statements

These instructions mark the end of a Do…Loop block of instructions and in some
instances also specify the loop termination condition.

Loop
-or-
Loop Until condition
-or-
Loop While condition

Prerequisites

Must always follow and match a Do statement within a procedure.

Remarks

Please see the documentation on the Do…Loop Statements for an explanation of the
use of the Loop instructions.

See Also

Statements | Do... Loop Statement

GPL Dictionary Pages

348

Module Statement

This statement begins a user-defined module section. All variable definitions and
procedures must be inside a Module or Class definition.

Module module_name

Prerequisites

Modules can only be declared at the top-level of a file.

Parameters

module_name

The name of module that is being started.

Remarks

A Module must always end with an End Module statement.

A Module contains variable, procedures or class definitions. There can be multiple
modules defined in a single file.

All variables, procedures and classes defined within a module can be accessed
anywhere in that module. Only Public variables, procedures and classes can be
accessed outside the module.

Examples

Module main_module
 Public Dim Start As Location ' All modules can access Start
 Private Dim x1 As Location ' Only this module can access x1

 ' All modules can access add_function

 Public Function add_function (x As Integer,y As Integer) As Integer
 add_function = x+y
 End Function
End Module

See Also

Statements | Class Statement | Dim Statement | End Module Statement | Function Statement | Sub
Statement

Statements

349

Next Statements

This instruction marks the end of a For…Next block of instructions.

Next variable

Prerequisites

Must always follow and match a For statement within a procedure.

Remarks

Please see the documentation on the For…Next Statements for an explanation of the
use of the Next instruction.

See Also

Statements | For…Next Statements

GPL Dictionary Pages

350

Property Statement

This statement begins a user-defined Property procedure. It specifies the return data
type and any parameters that are passed when it is called.

[Public | Private | Shared | ReadOnly | WriteOnly] Property property_name ([
parameter_list]) As type)

Prerequisites


 Properties can only be declared within class definitions.

Parameters

property_name

The name of the Property to be defined.

parameter_list

A list of parameters that are passed to the Property when it is called.
Properties often have an empty parameter list.

Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the Property has no parameters. Multiple
parameter list elements are separated by ",". Each element has the form:

[ByVal | ByRef] parameter_name As type

parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be a primitive type, the name of a
built-in class, or the name of a user-
defined class. The primitive type
keywords are:

Statements

351

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of the
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the
called routine can always change an object value, even when passed
using a ByVal parameter.

type

The type of the value returned by this Property. The type may be either
a primitive type, the name of a built-in class, or the name of a user-
defined class. The primitive type keywords are:

Boolean, Byte, Double, Integer, Short, Single

If a class name is specified, the returned type is an object.

Remarks

Property procedures may set a value or get (return) a value.

Property procedures that set a value must include a set procedure block that begins with
a Set statement and ends with an End Set statement. The property_name and
parameter_list may be used on the left-hand side of an assignment statement.

A Property procedure that gets a value must include a get procedure block that begins
with a Get statement and ends with an End Get statement. A Get Property may be used
just like a Function within an expression or on the right-hand side of an assignment
statement, where a value of the proper type is allowed.

A Property definition must always end with an End Property statement.

If the Property contains only a get procedure, the ReadOnly keyword must be specified.
If the Property contains only a set procedure, the WriteOnly keyword must be specified.

A property procedure exits when it encounters the End Property statement, an Exit
Property statement or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from within the class where it is defined.

GPL Dictionary Pages

352

If the Shared keyword appears, the property is associated with the entire class rather
than with a particular object of that class type.

Examples

Class cc
 Private size_value As Integer

 Public Property size As Integer ' Set size, clip value at 10
 Set (value As Integer)
 If value > 10 Then
 value = 10
 End If
 size_value = value
 End Set
 Get
 Return size_value
 End Get
 End Property

End Class
 :
Dim obj As New cc
obj.size = 20 ' Sets size_value
Console.WriteLine(obj.size) ' Displays 10

See Also

Statements | Get Statement | Set Statement

Statements

353

ReDim Statement

This statement increases or decreases an array size by changing the array's upper
bounds.

ReDim variable_name (dim_1[, dim_2 …])

Prerequisites

The variable_name parameter must already be declared to be an array, with the same
number of dimensions, in a Dim, Public, or Private statement.

Parameters

variable_name

The name of the array variable that is to have its size changed.

dim_1, dim_2, …

The new upper bounds for each dimension of the array. ReDim cannot
change the number of dimensions, so the number of dimensions must
match the original array declaration.

Remarks

The previous contents of an array are lost when a ReDim statement is executed. The
Preserve keyword is not supported in GPL.

Examples

 Dim array(3,4) As Integer
 Dim array2() As String

 ReDim array(4,6)
 ReDim array2(10)
 ReDim array2(2,3) ' Invalid, cannot change # of dimensions

See Also

Statements | Dim Statements

GPL Dictionary Pages

354

Return Statement

This statement causes a user-define procedure to return control the the calling procedure
and optionally return a value.

Return [value]

Prerequisites

Return can only appear within a procedure.

Parameters

value

The value to be returned to the calling procedure if the current procedure
is a Function. The value field must be specified in a Function procedure.
It must not be specified in Sub procedure.

Remarks

The current procedure exits when it encounters a Return statement and execution
continues with the calling procedure. If there is no calling procedure, the current thread is
terminated with success.

In a function procedure, a Return is equivalent to assigning a value to the function-name
variable followed by an Exit Function statement.

Examples

Function add_function (x As Integer, y As Integer) As Integer
 Return x+y
End Function

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
 result = x+y
 Return
End Sub

See Also

Statements | Exit Function statement | Exit Sub statement

Statements

355

Set Statement

This statement begins a Set procedure block within a Property procedure definition.

Set (parameter_name As type)

Prerequisites


 This statement can only appear within a Property definition.
 The Property definition that contains this statement must not specify the ReadOnly

attribute.

Parameters

parameter_name

The name of the parameter that contains the new value to which the
property is being set.

type

The type of the parameter_name parameter. This type must be identical
to the type of the Property that contains the Set statement.

Remarks

The Set procedure block must always end with an End Set statement.

Unlike VB.NET, the clause (parameter_name As type) must always be specified.

When a procedure sets the containing Property, the new value for the property is copied
to the parameter_name variable, and the Set procedure is executed. It is up to that
procedure to use or save the new value as desired.

Examples

Class cc
 Private WriteOnly size_value As Integer
 Public Property size As Integer ' Set size, clip value at 10
 Set (value As Integer)
 If value > 10 Then
 value = 10
 EndIf
 size_value = value
 End Set
 End Property
End Class
 :
Dim obj As New cc
obj.size = 20 ' Sets size_value

GPL Dictionary Pages

356

See Also

Statements | Property Statement | Get Statement

Statements

357

Sub Statement

This statement begins a user-defined subroutine procedure. It specifies any parameters
that are passed when it is called.

[Public | Private | Shared] Sub subroutine_name([parameter_list])

Prerequisites

 Procedures cannot be declared inside of other procedures.
 Procedures must be declared within modules or classes.

Parameters

subroutine_name

The name of the subroutine to be defined.

parameter_list

A list of parameters that are passed to the procedure when it is called.
Each parameter appears as a locally defined variable and is associated
with a value when the procedure is called. The caller must provide
arguments that match the number and type of the parameters specified
in this statement.

The list may be empty if the subroutine has no parameters. Multiple
parameter list elements are separated by “,’. Each element has the form:

[ByVal | ByRef] parameter_name As type

parameter_name

The name of the variable associated
with this parameter. This name is known
only within the procedure being defined.

type

The type of this parameter. The type
may be either a primitive type or the
name of a built-in class. The primitive
type keywords are:

Boolean, Byte, Double, Integer, Short,
Single

If a class name is specified, the variable
becomes an object variable.

GPL Dictionary Pages

358

Either ByVal or ByRef can be specified, but not both. If neither is
specified, the default is ByVal. A ByVal parameter receives a copy of
argument value from the caller. The local procedure can change the
value without affecting the caller’s value. A ByRef parameter references
the caller’s value directly. Any changes to a ByRef parameter in the
called routine are reflected in the calling routine.

Since object variables always deal with pointers to object values, the called
routine can always change an object value, even when passed using a ByVal
parameter.

Remarks

A Sub procedure does not return a value and cannot be used within an expression. A
Sub procedure can be used with a Call statement or by itself as a statement.

A Sub definition must always end with an End Sub statement.

A subroutine procedure exits when it encounters the End Sub statement, an Exit Sub
statement, or a Return statement.

If Public is specified, this procedure can be called from other modules or classes.
Otherwise it can only be called from the module or class where it is defined.

The Shared keyword can only be used within a class definition. If it appears, the
subroutine is associated with the entire class rather than with a particular object of that
class type.

Examples

Sub add_sub (x As Integer, y As Integer, ByRef result As Integer)
 result = x+y
End Sub

add_sub(4, 5, a) ' Variable a gets value 9

See Also

Statements | End Sub Statement | Exit Sub Statement | Return Statement | Sub Statement

Statements

359

While...End While Statements

These instructions bound a block of instructions that are repeatedly executed so long as
a specified expression evaluates to True.

While condition
 [statements]
End While

Prerequisites

None

Parameters

condition

Required expression that is interpreted as a True or False value. Any
expression that yields a numeric result can be specified, not just
Boolean expressions. Any expression that evaluates to <>0 is
interpreted as a True condition.

statements

Optional statement or list of statements that are repeatedly executed so
long as the condition evaluates to True.

Remarks

This control structure tests an expression and repeatedly executes a block of statements.
It can be used to implement program instruction loops.

The While statement begins execution by testing the value of the condition. If the
condition is True, the statements are executed. When the End While instruction is
encountered, the condition is tested again. If the condition is still True, the statements are
executed once again. This process is repeated until the condition tests False or the
statements explicitly execute an instruction that continues execution outside of the loop. If
the condition ever tests False, execution continues at the instruction following the End
While.

If the condition is False when the While first begins execution, the statements are
skipped, in which case, the statements are not executed even once.

For more complex logic, multiple While…End While sequences can be nested to an
arbitrary depth and can be combined with other nested control structures. For example, a
While loop can contain an If…Then…End If sequence which can in turn contain another
While…End While sequence.

GPL Dictionary Pages

360

Execution of the While loop can be terminated by a number of different methods: the
condition can be set False prior to the execution of the End While statement; execution
can be explicitly transferred to an instruction outside of the loop, e.g. by the execution of
a GoTo instruction; or an Exit While instruction can be executed.

When an Exit While statement is encountered, execution of the innermost While…End
While sequence is immediately terminated and execution continues at the instruction
following the End While. There can be none or several Exit While statements within
each While loop.

Examples

Dim count As Integer
count = 10
While count > 0 ' This condition initially evaluates to True
 If count = 5 Then
 Exit While ' Prematurely stops While loop
 End If
 count -= 1 ' Same as “count = count-1”
End While

See Also

Statements | Do… Loop Statements | For…Next Statements | GoTo Statements |
If…Then…Else…End If Statements

361

Strings
String Summary

The following pages provide detailed information on the properties, methods and
functions that are available to assist in manipulating String variables. Internally, Strings
are implemented using much of the same structure and procedures as other built-in
Classes. Therefore, in addition to providing classic Basic functions for operating on
Strings, e.g. Len, String variable properties and methods are also available for
performing many of the same operations.

A number of easy-to-use functions are provided for converting between String values
and numerical values, e.g. CStr, CDbl, CInt, Hex . Each of these built-in operations is
described in the section on Functions.

The table below briefly summarizes the properties and methods of String variables that
are described in greater detail in the following section.

Member Type Description

String.Compare Method
Compares the values of two Strings in either
a case sensitive or case insensitive manner.

string.IndexOf Method
Searches for an exact match of a substring
within the string variable and returns the
starting position if found (0-n).

string.Length Property
Returns the number of characters stored in a
String variable.

string.Split Method

Divides the string variable value into a series
of substrings based upon a specified
separator character and returns the array of
substrings.

string.Substring Method
Returns a substring of the string variable
starting at a specific character position and
with the specified length.

string.ToLower Method
Returns a copy of the string with all lower case
characters.

string.ToUpper Method
Returns a copy of the string with all upper
case characters.

string.Trim Method
Trims off characters or white space from the
start and end of a String variable value.

string.TrimEnd Method
Trims off characters or white space from the
end of a String variable value.

string.TrimStart Method
Trims off characters or white space from the
start of a String variable value.

The following table summarizes the String functions that are also described in greater
detail in the subsequent section.

Function Description

Asc (string)
Converts the first character of a String to its equivalent
ASCII numerical code.

GPL Dictionary Pages

362

Chr (expression) Given a numerical ASCII code, a String that consists of
the equivalent ASCII character is returned.

Format (expression, format_s)
Converts a numerical value to a String value based
upon a specified output format specification.

Instr (start, string_t, string_s)
Searches for an exact match of a substring within a
String expression and returns the starting position if
found (1-n).

LCase (string)
Returns a String value that has been converted to lower
case.

Len (string) Returns the number of characters in a String.

Mid(string, first, length)
Returns a substring of the string starting at the first
character position and consisting of length number of
characters.

UCase (string)
Returns a String value that has been converted to
upper case.

Strings

363

String.Compare Method

Compares two String expressions either taking into consideration or ignoring the case of
the characters and returns an indication of the results.

...String.Compare(string_a, string_b, ignore_case)

Prerequisites

None

Parameters

string_a

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

string_b

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements.

ignore_case

An optional numeric expression. If the value of this expression is True,
the comparison is performed ignoring the case of the characters, i.e. "A"
will be equal to "a". If this value is False or not specified, the comparison
is performed in a case-sensitive manner.

Remarks

This shared method compares the values of two String expressions and returns an
indication of the results of the comparison. Depending upon the value of ignore_case, the
comparison is either performed taking into account the case of characters or ignoring the
case of characters. The returned value is interpreted as follows:

String Relationship Returned result

 string_a > string_b > 0
 string_a = string_b = 0
 string_a < string_b < 0

String comparisons can also be performed using the standard comparison operators, i.e.
=, <>, <, >, <=, >=. When two Strings are compared using the comparison operators, the
comparison is always performed taking into consideration the case of the characters.

GPL Dictionary Pages

364

Examples

Dim stg As String ' Create a new string variable
Dim ii As Integer
stg = "aBcdef"
ii = String.Compare(stg, "abcdef") ' ii will be set <0

See Also

Strings

Strings

365

string.IndexOf Method

Searches for an exact match of a substring within a string variable and returns the
starting position if found (0-n).

...string.IndexOf(string_s, start)

Prerequisites

None

Parameters

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string value.

start

An optional numeric expression. This value specifies the first character
position that is tested in the string. If undefined, match testing begins
with the first character in string. Unlike the Instr function, a 0 specifies
the first character position in the string.

Remarks

This method searches the value of the string variable for an exact, case sensitive match
to the specified string_s value. The search begins at the character specified by start and
continues with successive characters until either the first match is found or the end of the
string is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

String Values Returned Value

string_s is found in string Character position where the match begins. 0
indicates matched started at the first character of

string.

string has a zero length -1

string_s has a zero length start value

string_s not found in string -1

Examples

GPL Dictionary Pages

366

Dim stg_a As String ' Create string variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = stg_a.IndexOf("Fg") ' pos will be set to 5
pos = stg_a.IndexOf("FG") ' pos will be set to -1
pos = stg_a.IndexOf("Fg", 10) ' pos will be set to 31

See Also

Strings | Instr Function

Strings

367

string.Length Property

Returns the count of the number of characters stored in a String variable.

...string.Length

Prerequisites

None

Parameters

None

Remarks

Returns the Integer count of the number of characters that are stored in a String
variable. If the value of the String is empty, a count of 0 is returned.

Examples

Dim stg As String ' Create a new string variable
Dim ii As Integer
stg = "123456"
ii = stg.Length ' ii will be set to 6

See Also

Strings | Len Function

GPL Dictionary Pages

368

string.Split Method

Divides a String variable value into a series of substrings based upon a specified
separator character and returns the array of substrings.

...string.Split(separator_string)

Prerequisites

None

Parameters

separator_string

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. The first character of this expression defines the
separator character. For example, to split a line containing substrings
separated by commas, this String should be set to ",".

Remarks

This method scans the value of the string variable searching for the specified separator
character. Each time the separator is found, the text after the previous separator (or from
the start of the string if this is the first separator) and up to the new separator is taken as
a substring and stored in a String array that is returned by this method. If the string
variable does not contain a separator character, the entire contents of the string are
copied to first element of the output array.

Examples

Dim stg_arr() As String ' Create array string variable
Dim stg As String
stg = "1,2 ,this is the 3rd string"
stg_arr = stg.Split(",") ' stg_arr(0) = "1"
 ' stg_arr(1) = "2 "
 ' stg_arr(2) = "this is the 3rd string"

See Also

Strings

Strings

369

string.Substring Method

Extracts and returns a substring of the string variable starting at a specific character
position and with a specified length.

...string.Substring(first_pos, length)

Prerequisites

None

Parameters

first_pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Mid function,
the first character position is 0 rather than 1.

length

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string starting at the first_pos will be copied.

Remarks

This method extracts a substring from the value of a String variable and returns the
results. The substring is specified by its starting character position in the string and the
number of characters to be extracted.

Examples

Dim stg_a, stg_result As String ' Create two string variables
stg_a = "aBcdef"
stg_result = stg_a.Substring(3, 2) ' stg_result will be set to "de"

See Also

Strings | Mid Function

GPL Dictionary Pages

370

string.ToLower Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to lower case.

...string.ToLower

Prerequisites

None

Parameters

None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to lower case while leaving all of the non-alphabetic characters unchanged.

Examples

Dim stg_a, stg_b As String ' Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.ToLower ' stg_b set to "abcdef"

See Also

Strings | LCase Function | string.ToUpper | UCase Function

Strings

371

string.ToUpper Method

Returns a copy of a String value where all of the alphabetic characters have been
changed to upper case.

...string.ToUpper

Prerequisites

None

Parameters

None

Remarks

This method copies the value of a String variable and converts all of the alphabetic
characters to upper case while leaving all of the non-alphabetic characters unchanged.

Examples

Dim stg_a, stg_b As String ' Create two string variables
stg_a = "aBcDeF"
stg_b = stg_a.ToUpper ' stg_b set to "ABDCEF"

See Also

Strings | LCase Function | string.ToLower | UCase Function

GPL Dictionary Pages

372

string.Trim Method

Trims off characters or white space from the start and end of a String variable value.

...string.Trim(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start and the
end of the string. If a trimming character String is not specified, any
white space (e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at both the start and at the end of the
string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings | string.TrimEnd| string.TrimStart

Strings

373

string.TrimEnd Method

Trims off characters or white space from the end of a String variable value.

...string.TrimEnd(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the end of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the end of the string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings | string.Trim| string.TrimStart

GPL Dictionary Pages

374

string.TrimStart Method

Trims off characters or white space from the start of a String variable value.

...string.TrimStart(trim_chars)

Prerequisites

None

Parameters

trim_chars

An optional String expression. The characters of this expression define
the individual characters that are to be trimmed from the start of the
string. If a trimming character String is not specified, any white space
(e.g. space and/or horizontal tab characters) is trimmed off.

Remarks

This method trims off any occurrence of the characters specified in the trim_chars
expression from the associated string variable and returns the resulting String value. If
multiple trim characters are present in the string, trimming continues until a non-trim
character is encountered. Trimming is performed at the start of the string variable.

Examples

Dim stg_a, stg_t As String ' Create string variables
stg_a = "112211this is a test221122"
stg_t = stg_a.Trim("12") ' stg_t set to "this is a test"
stg_t = stg_a.TrimStart("21") ' stg_t set to "this is a test221122"
stg_t = stg_a.TrimEnd("123") ' stg_t set to "112211this is a test"
stg_a = " another test "
stg_t = stg_a.Trim() ' stg_t set to "another test"

See Also

Strings | string.Trim| string.TrimEnd

Strings

375

Asc Function

Converts the first character in a String variable or expression into its equivalent ASCII
numerical code and returns the Integer result.

...Asc (string)

Prerequisites

None

Parameters

string

A required String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

Given a String variable or expression, the first character in the String is extracted and its
equivalent numerical value is returned as an Integer. This routine is convenient if you
have a string that contains non-printable characters and you wish to operate on their
values.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ii = Asc(ss) ' ii will be set to 10

See Also

Strings | Chr Function

GPL Dictionary Pages

376

Chr Function

Given a numerical ASCII code, a String that consists of the equivalent ASCII character is
constructed and returned.

...Chr (expression)

Prerequisites

None

Parameters

expression

A required numerical expression. The expression must have an Integer
value that ranges from 0 to 255.

Remarks

Given a numerical expression whose Integer value defines one of 256 possible ANSI
ASCII character codes, a String is constructed and returned that contains a single
character set to the ASCII code.

This routine is convenient if you wish to construct a String value that contains non-
printable characters.

Examples

Dim ii As Integer
Dim ss As String
ss = Chr(10) ' Line feed character
ss = Chr(GPL_CR) ' Carriage return character
ii = Asc(ss) ' ii will be set to 10

See Also

Strings | Asc Function

Strings

377

Format Function

Converts a numerical value to a String value based upon a specified output format
specification.

...Format(expression, format_s)

Prerequisites

None

Parameters

expression

A required numeric expression. This defines the numerical value that is
to be converted to a string. This value can be any numeric type, e.g.
Integer, Double, Boolean, etc.

format_s

An optional String expression. This String expression defines the
output format to generate. If format_s is not specified or is an empty
String value, the default format ("G") is utilized.

Remarks

This function converts a numerical value to a String in a specified format. The format_s
value specifies one of several pre-defined formats or defines a custom format. If the
format specification is not recognized, the contents of format_s are copied to the output in
place of a converted numerical value.

To specify a pre-defined formats, format_s must contain one of the single character
specifications described in the following table.

Predefined Formats Output Format

"G" or "g" General purpose format. Displays a maximum of 17 characters
including the sign character. Includes at least one integer digit
with no leading space characters or trailing zero's in the
fractional part. If the number is too large to display in 17
characters, this format automatically switches to scientific
notation.

"F" or "f" Fixed format. Always displays two fractional digits plus at least
one integer digit and more as required. No leading or trailing
space characters are generated.

"E" or "e" Scientific notation. Generates a value in the form of

GPL Dictionary Pages

378

"[s]n.nnnnnnesxx" where "s" is a "+" or "-" sign character and
"xx" is the base 10 exponent.

The custom format definition is a character by character literal description of the output
format. For example, "0.00#" specifies that the output is to contain as least one integer
digit and two fractional digits with an optional third fractional digit. If the numerical value
contains more integer digits than specified by the format, additional digits are added to
the left to fully display the numerical value. If additional fractional digits exist, the
fractional part is rounded to the specified number of fractional digits and only the
specified fractional digits are displayed. Leading and trailing space characters are not
included in the output.

The following table defines the character placeholders permitted in a custom format.

Custom Formats Output Format

"0" Displays a digit or "0" if none. If a "0" is to the left of the
decimal point, sufficient leading zeros are generated to display
the specified number of decimal digits. Likewise, a "0" to the
right of the decimal point always results in a digit or a "0"
character. For instance, when the number 23 is displayed
using the format "0000.0", the output of the Format function is
"0023.0".

"#" Displays a digit or nothing. If a "#" is to the left of the decimal
point, a digit is displayed if it is non-zero else nothing is added
to the output stream. Likewise, if a "#" is to the right of the
decimal point, only non-zero digits are displayed. For
instance, when the number 23 is displayed using the format
"###0.#", the output of this function is "23.".

"." Decimal point placeholder. Separates integer and fractional
placeholders. Also, results in a "." being included in the output
stream.

"E" or "e" Scientific notation. Outputs a number in scientific notation.
This format always generates one digit to the left of the decimal
point and a sign character and two digits in the exponent, e.g.
"[s]n.nnnnesxx". The significance of the custom format is to
specify the number of fractional digits to be included.

Examples

Dim stg_a As String ' Create string variable
stg_a = Format(2323) ' Default ("G") format, "2323"
stg_a = Format(2323,"G") ' General ("G") format, "2323"
stg_a = Format(2323,"F") ' Fixed ("F") format, "2323.00"
stg_a = Format(2323,"E") ' Exponential ("E") format, "2.323000e+03"

stg_a = Format(.2,".0#") ' Outputs ".2"
stg_a = Format(.23,".0#") ' Outputs ".23"
stg_a = Format(-.23,".0#") ' Outputs "-.23"
stg_a = Format(2.1,".##") ' Outputs "2.1"
stg_a = Format(23.23,".000") ' Outputs "23.230"
stg_a = Format(23.23,"0000") ' Outputs "0023"
stg_a = Format(23.23,"0") ' Outputs "23"
stg_a = Format(-.23,"0.00e000") ' Outputs "-2.30e-01"

Strings

379

See Also

Strings | CStr Function | Hex Function

GPL Dictionary Pages

380

Instr Function

Searches for an exact match of a substring within a String expression and returns the
starting position if found (1-n).

...Instr(start, string_t, string_s)

Prerequisites

None

Parameters

start

A required numeric expression. This value specifies the first character
position that is tested in string_t. Unlike the IndexOf method, a 1
specifies the first character position in string_t.

string_t

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the target String that is searched for the
substring, string_s.

string_s

A required String expression. The String expression can be a String
variable, constant, function or method, or a concatenation of these
String elements. This specifies the substring value that must be found
within the string_t value.

Remarks

This method searches the value of the string_t expression for an exact, case sensitive
match to the specified string_s value. The search begins at the character specified by
start and continues with successive characters until either the first match is found or the
end of the string_t is encountered.

Depending upon the outcome of the search, the following values are returned by this
method.

String Values Returned Value

string_s is found in string_t Character position where the match begins. 1
indicates matched started at the first character of

string.

string_t has a zero length 0

Strings

381

string_s has a zero length start value

string_s not found in string_t 0

Examples

Dim stg_a As String ' Create string variable
Dim pos As Integer
stg_a = "aBcDeFgHiJkLmNoPqRsTuVwXyZaBcDeFgHiJk"
pos = Instr(1, stg_a, "Fg") ' pos will be set to 6
pos = Instr(1, stg_a, "FG") ' pos will be set to 0
pos = Instr(10, stg_a, "Fg") ' pos will be set to 32

See Also

Strings | string.IndexOf

GPL Dictionary Pages

382

LCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to lower case.

...LCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
lower case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples

Dim stg_result As String ' Create a string variable
stg_result = LCase("aBcDeF") ' stg_result set to "abcdef"

See Also

Strings | string.ToLower | string.ToUpper | UCase Function

Strings

383

Len Function

Returns the count of the number of characters contained in a String variable or
expression.

...Len (string)

Prerequisites

None

Parameters

string

A required String value. The string can be a String variable, constant,
method or concatenated value.

Remarks

Returns the Integer count of the number of characters contained in the specified string. If
the value of the string is empty, a count of 0 is returned.

Examples

Dim ii As Integer
ii = Len("123456") ' ii will be set to 6

See Also

Strings | string.Length

GPL Dictionary Pages

384

Mid Function

Returns a substring of a String expression starting at the specified character position and
consisting of a specified number of characters.

...Mid(string_exp, first_pos, length)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

first_pos

A required numeric expression. This specifies the position of the first
character to be extracted and returned. Note, unlike the Substring
method, the first character position is 1 rather than 0.

length

An optional numeric expression. This value specifies the number of
characters to be copied into the returned value. If length is 0, the
returned substring will be empty. If length is not specified, all of the
remaining characters in the string_exp starting at the first_pos will be
copied.

Remarks

This function evaluates a String expression, extracts a substring from its value, and
returns the results. The substring is specified by its starting character position in
string_exp and the number of characters to be extracted.

Examples

Dim stg_result As String ' Create a string variable
stg_result = Mid("aBcdef", 4, 2) ' stg_result will be set to "de"

See Also

Strings | string.Substring

Strings

385

UCase Function

Returns a copy of a String expression where all of the alphabetic characters have been
converted to upper case.

...UCase(string_exp)

Prerequisites

None

Parameters

string_exp

A required String expression. string_exp can be a String variable,
constant, function, method or a concatenation of these String elements.

Remarks

This function evaluates a String expression, converts all of the alphabetic characters to
upper case leaving all of the non-alphabetic characters unchanged, and returns the
resulting String value.

Examples

Dim stg_result As String ' Create a string variable
stg_result = UCase("aBcDeF") ' stg_result set to "ABCDEF"

See Also

Strings | LCase Function | string.ToLower | string.ToUpper

386

Thread Class
Thread Class Summary

The following pages provide detailed information on the methods of the Thread Class.
This class provides the means for starting, stopping, and monitoring the execution of
independent threads.

The GPL system supports the simultaneous execution of up to 32 GPL program threads.
Each thread has its own execution stack and runs independently of all other threads. If
multiple threads are active, each thread executes for up to 1 millisecond before control
passes to the next ready thread.

When a GPL project is loaded, one procedure is designated as the main procedure in the
project file settings. This main procedure is started by the GDE interface, the web
Operator Control Panel, the Start console command, or automatically when the system is
restarted.

The main procedure can then start additional procedures as separate threads.

The table below briefly summarized the methods and properties that are described in
greater detail in the following sections

Member Type Description

New Thread Constructor
Method

Creates a thread object and associates it with
a procedure.

thread_object.Abort Method
Stops execution of a thread such that it
cannot be resumed.

Thread.CurrentThread Shared
Method

Returns a thread object for the currently
executing thread.

thread_object.Join Method
Waits for a thread to complete execution, with
a timeout.

thread_object.Resume Method
Resumes execution of a thread that was
suspended.

thread_object.SendEvent Method
Sends an event to a thread to notify it that a
significant transition has occurred.

Thread.Sleep Shared
Method

Causes the current thread to stop execution
for a specified amount of time.

thread_object.Start Method
Initializes and starts execution of a procedure
as an independent thread.

thread_object.Suspend Method
Suspends execution of a thread so that it can
be resumed.

thread_object.ThreadState Get Property
Returns an integer indicating the execution
state of a thread.

Thread.WaitEvent Shared
Method

Causes the current thread to wait for an
event.

Thread Class

387

New Thread Constructor

Constructor for creating a thread object and associating it with the procedure executed by
the thread.

New Thread(procedure_name, project_name, thread_name, stack_size)

Prerequisites

None

Parameters

procedure_name

A required string expression that specifies the name of the first
procedure to be executed by the thread. This procedure must be
declared as Public. That is, the Public keyword must be specified in its
definition.

project_name

An optional string expression that specifies the name of the project that
contains procedure_name. If this parameter is omitted, the name of the
current project is assumed. Specifying this parameter is not supported by
GPL at this time.

thread_name

An optional string expression that specifies the name of the thread to be
created. If this parameter is omitted, the procedure_name value is used
as the thread name.

stack_size

An optional numeric expression that specifies the number of kilobytes of
stack to allocate for this thread. If zero or omitted, the default stack size
for this project is used.

Remarks

This method does not actually create the thread in the system. It simply records the
names for use by the Start method. If the procedure or project does not exist, no errors
occur until the Start method is called.

Examples

GPL Dictionary Pages

388

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' Public procedure Test in the current project
Dim thread1 As New Thread(“Test”,,“Thread1”) ' Create a thread object to execute
 ' Public procedure Test with thread name Thread1

See Also

Thread Class | thread_object.Start

Thread Class

389

thread_object.Abort Method

Stops a thread’s execution immediately and does not allow it to be resumed. The thread
must be restarted from the beginning.

thread_object.Abort()

Prerequisites

None

Parameters

None

Remarks

This method stops the thread associated with the object and deallocates internal
resources, just as if a console Stop command were issued. The thread cannot be
resumed, but can only be restarted using the Start method.

If you wish to be able to resume a thread, use the Suspend method instead.

If a thread executes the Abort method for itself, the thread exits with an error, but it is not
deallocated in the same way as a separate thread

Examples

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread
thread1.Abort() ' Stop the thread and prevent resumption.
Thread.CurrentThread.Abort() ' Stops thread in which it is executed

See Also

Thread Class | thread_object.Start | thread_object.Suspend

GPL Dictionary Pages

390

Thread.CurrentThread Shared Method

Returns a thread object that corresponds to the currently running thread.

thread_object = Thread.CurrentThread()

Prerequisites

None

Parameters

None

Remarks

This shared method returns an object that corresponds to the currently running thread.
This object may be used to abort or suspend the current thread. It does not need to be
associated with a thread object, only the thread class.

Examples

Dim mythread As Thread.CurrentThread() ' Create a thread object for the
 ' current thread.
Thread.CurrentThread.Suspend () ' Suspend the current thread.

See Also

Thread Class

Thread Class

391

thread_object.Join Method

Waits for a thread to become idle, with a timeout. Returns -1 (True) if the thread is now
idle or 0 (False) if the timeout time was exceeded.

status = thread_object.Join(millisecond_timeout)

Prerequisites

None

Parameters

millisecond_timeout

The maximum time to wait for the thread associated with thread_object
to become idle. A value of 0 means do not wait, just test if the thread is
idle. A value of -1 means do not timeout, wait forever for the thread.

Remarks

When this method is called, the calling thread waits until the thread associated with
thread_object becomes idle, or until the specified timeout value is exceeded. The
returned value of the method is -1 (True) if the thread is idle or if the thread does not
exist. The returned value is 0 (False) if the thread exists and is not idle. Normally a
returned value of 0 indicates that the timeout time has been exceeded. If the calling
thread is suspended externally and then resumed during the Join method, the value 0 is
returned even though the timeout time may not have been exceeded.

If the referenced thread is suspended or stops with an error, the Join method continues
waiting. It only completes with True when the thread is idle or deleted.

Examples

Dim thread1 As New Thread(“Test”)' Create a thread object to execute the
 ' procedure Test in the current project
Dim status As Integer
thread1.Start() ' Start the thread
status = thread1.Join(10000) ' Wait for the thread to complete with a
 ' 10-second timeout.
If status Then
 Console.Writeline(“thread1 is complete”)
End If

See Also

Thread Class | thread_object.ThreadState

GPL Dictionary Pages

392

thread_object.Resume Method

Resumes execution of a thread that was previously suspended.

thread_object.Resume()

Prerequisites

None

Parameters

None

Remarks

This method resumes the thread associated with the object, just as if a console Continue
command were issued. The thread may have been stopped by the Suspend method, or
by a break point, or by the console Break command.

If the thread is not suspended, this method does nothing.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread
thread1.Suspend() ' Suspend the thread for now.
Thread.Sleep(1000) ' Wait for 1 second
thread1.Resume() ' Resume the thread

See Also

Thread Class | thread_object.Suspend

Thread Class

393

thread_object.SendEvent Method

Sends an event to a specific thread to notify it that a significant transition has occurred.

thread_object.SendEvent(event_mask)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the events to be sent. Each
bit in event_mask corresponds to a different event. Bit 0 (mask value
&H0001) corresponds to event 1. Multiple events may be specified. The
maximum event is 16, so the maximum value for event_mask is
&HFFFF.

Remarks

Events are messages that are sent to synchronize one thread that is executing a GPL
project with another GPL project thread. Utilizing events has several advantages over
setting and polling a global variable:


 The thread waiting for an event uses almost no CPU time, as opposed to polling a global

variable.
 There is very little latency between when a message is sent and when the target thread

wakes up and handles the event, as opposed to a polling method where the worst-case
latency is the polling period.

For more details on events and event handling, see the WaitEvent method

Examples

Dim tl As New Thread(“TestThread”)
tl.Start
 :
tl.SendEvent(&H10) ' Send event 5 to thread

See Also

Thread Class | Thread.WaitEvent

GPL Dictionary Pages

394

Thread.Sleep Shared Method

Makes the current thread wait until a specified number of milliseconds have passed.

Thread.Sleep(milliseconds)

Prerequisites

None

Parameters

milliseconds

The number of milliseconds that this thread should wait before continuing
execution with the next statement. A value of 0 means allow another
thread to execute, but continue execution of the current thread
immediately if no other thread is ready. A value < 0 means wait forever,
and is equivalent to invoking the Suspend method for the current task.

Remarks

This shared method is normally associated with the thread class, not an object. If it is
used with an object, the current thread always waits, regardless of the thread object
contents.

If a sleeping thread is suspended and resumed, the wait continues relative to the time
when this method was originally invoked.

Examples

Thread.Sleep(5000) ' The current thread waits for 5 seconds

Dim thread1 As New Thread(“Test”) ' Create an object for a different thread
thread1.Sleep(1000) ' The current thread waits for 1 second

See Also

Thread Class

Thread Class

395

thread_object.Start Method

Starts the execution of an independent thread.

thread_object.Start()

Prerequisites

The procedure associated with thread_object must be declared Public.

The procedure associated with thread_object must be loaded into memory and compiled
without errors.

Parameters

None

Remarks

This method begins a new thread that executes the procedure associated with the
thread_object, just as if a console Start command were issued.

If the thread is currently active, this method does nothing and returns without error.

If the thread is currently paused, it is restarted by clearing the execution stack and
executing the procedure associated with the object. If a thread is stopped by using the
Abort method, it can only be restarted by using Start.

If the project or procedure associated with the object does not exist, or if there were any
errors compiling the project, this method issues an error.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' Public procedure Test in the current project
thread1.Start() ' Start the thread

See Also

Thread Class | thread_object.Abort

GPL Dictionary Pages

396

thread_object.Suspend Method

Suspends the execution of an independent thread.

thread_object.Suspend()

Prerequisites

None

Parameters

None

Remarks

This method suspends the thread associated with thread_object, just as if a console
Break command were issued. The thread stops at the end of the current GPL instruction.
The thread may be resumed where it left off by the Resume method or by a console
Continue command.

If the thread does not exist, an error occurs. If the thread exists but is not currently active,
no error is generated.

This method does not wait until the thread actually stops. Use the ThreadState property
to determine when the thread is suspended.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread
thread1.Suspend() ' Suspend the thread for now.
Thread.Sleep(1000) ' Wait for 1 second
thread1.Resume() ' Resume the thread

See Also

Thread Class | thread_object.Resume

Thread Class

397

thread_object.ThreadState Property

Gets a numeric value indicating the execution state of the thread specified by
thread_object.

state_var = thread_object.ThreadState

Prerequisites

None

Parameters

None

Remarks

This property returns information about a thread’s execution state. The numeric value
returned by this property is described in the table below.

ThreadState Value Description

-1 The thread does not exist. Either it was never started or it was
stopped and deleted by an Abort method.

0 The thread has completed execution normally and is idle. It cannot
be resumed, but it can be restarted with Start.

1 The thread is stopping execution. This state is transient.
2 The thread is executing normally.
3 The thread is paused without error and can be resumed.
4 The thread is paused with an error. If it is resumed, it will retry the

instruction that caused the error.

Examples

Dim thread1 As New Thread(“Test”) ' Create a thread object to execute the
 ' procedure Test in the current project
thread1.Start() ' Start the thread
Console.Writeline(thread1.ThreadState) ' Display the state code for thread1

See Also

Thread Class

GPL Dictionary Pages

398

Thread.WaitEvent Shared Method

Wait for, test and clear events received by the current thread. Returns a mask indicating
the received events.

received_events = Thread.WaitEvent(event_mask, time_out)

Prerequisites

None

Parameters

event_mask

A required numeric expression that specifies the set of events to wait for.
Each bit in event_mask corresponds to a different event. Multiple events
may be specified. The maximum event is 16, so the maximum value for
event_mask is &HFFFF.

If event_mask is 0, no wait occurs, no events are cleared, and all
received events are returned.

time_out

A required numeric expression that specifies the maximum time, in
milliseconds, to wait if no matching events are received. The maximum
wait time is 2147 seconds.

If 0, this method does not wait, but only tests pending events against the
event_mask. If < 0, this method does not timeout and waits forever.

Remarks

The returned value is a bit mask indicating events that have been received. Bit 0 (mask
value &H0001) corresponds to event 1. The mask indicates either all pending events, or
only those matched by event_mask, as described below.

The behavior of this method depends on the combination of parameters as described in
the following table.

event_mask
Value

time_out
Value

Description

 0 N.A.
The method does not wait for or clear any events, but simply
returns a bit mask indicating all received events.

 <> 0 0 The method does not wait. It clears all events that match the

Thread Class

399

bits in event_mask. It returns a bit mask indicating the events
that were cleared. This parameter combination may be used
to return and clear specific received events without waiting.

 <> 0 > 0

The method waits until at least one event corresponding to a
bit in event_mask has been received. If a matching event was
previously received and not cleared, the method does not
wait.

Before returning, it clears all pending events that match the
bits in event_mask, and returns a bit mask indicating the
events that were cleared.

If no matching event is received before the timeout period, this
method returns a value of 0.

 <> 0 < 0
This case is the same as "event_mask <> 0, time_out > 0"
case except that it waits indefinitely for the events, and never
times out.

Events are synchronization messages that are sent from one thread executing a GPL
project to another thread that is executing a GPL project. Utilizing events has several
advantages over setting and polling a global variable:


 The thread waiting for an event uses almost no CPU time, as opposed to polling a global

variable.
 There is very little latency between when a message is sent and when the target thread

wakes up and handles the event, as opposed to a polling method where the worst-case
latency is the polling period.

Each thread can handle up to 16 different events. These 16 events are independent of
the events for all other threads. An event is specified by the target thread and a bit within
the thread’s event_mask.

Events handled by WaitEvent are automatically cleared, except for the special case
when event_mask = 0. A receiving thread can simply loop waiting for events, checking
the returned bit mask, and servicing whatever events bits are set. If the
WaitEventevent_mask specifies more than one event, be sure to check all possible
events, since more than one event may be returned simultaneously and be cleared.

In a client-server situation, a client thread can place a command in a global variable, and
then send an event to the server. When the server receives the event, it can examine the
global variable to determine the detailed command.

Examples

Public main_thread As Thread

Public Sub Main
 Dim t1 As New Thread("Testthread")
 main_thread = Thread.CurrentThread
 t1.Start
 t1.SendEvent(&H10) ' Send event 5 to thread
 Thread.WaitEvent(&H8, -1) ' Wait for event 4, clear it
 Console.Writeline ("Main thread event received")
End Sub

GPL Dictionary Pages

400

Public Sub Testthread
 Dim events As Integer
 events = Thread.WaitEvent(&H10,100) ' Wait with timeout
 If events = 0 Then
 Console.Writeline ("Testthread event timeout")
 Else
 Console.Writeline ("Testthread event received")
 End If
 main_thread.SendEvent(&H8) ' Send event 4 back to main thread
End Sub

See Also

Thread Class | thread_object.SendEvent

401

Vision Classes
Vision Classes Summary

The following pages provide detailed information on the properties and methods for the
classes that implement the interface to the PreciseVision machine vision system.

This interface includes two classes: the Vision Class that manages communications
between GPL and PreciseVision and the VisResult Class that stores a single set of
results from a single vision tool. As a convenience, there is no explicit method for
connecting to PreciseVision. Whenever the Vision methods Process, Result or
ResultCount are executed, GPL automatically establishes a connection to the vision
system.

The tables below briefly summarize the properties and methods for each Class, which
are described in greater detail in the following sections.

Vision Class
Member Type Description

New Vision Constructor
Method

Creates an empty Vision object. Does
not communicate with PreciseVision.

Vison.Disconnect Shared Method
Closes any open connection to
PreciseVision.

vision_obj.ErrorCode Property

Returns the numeric error code for the
last executed vision process. A value of
0 indicates success; a negative value
indicates an error.

vision_obj.Process Method

Requests that PreciseVision execute a
vision process and waits for it to
complete. Connects to PreciseVision if
there is currently no connection.

vision_obj.Result Method

Returns a VisResult object that
contains a single set of results from a
previously executed vision tool.
Connects to PreciseVision if there is
currently no connection.

vision_obj.ResultCount Method

Returns the number of sets of vision
results created by a vision tool the last
time it was executed. Connects to
PreciseVision if there is currently no
connection.

vision_obj.Status Property

Returns a numeric value indicating the
status of a vision process:

0 = No vision process for this object,
1 = Process is running,
2 = Process complete but with error,
3 = Process complete with success.

Vision.ToolProperty Shared
Property

Sets or gets the value of a tool property
within PreciseVision.

GPL Dictionary Pages

402

VisResult Class Member Type Description

New VisResult Constructor
Method

Creates an empty VisResult object.
Not useful since VisResult objects
are normally created by the
vision_object.Result method.

visresult_obj.ErrorCode Property

Returns the numeric error code for
this result. A value of 0 indicates
success; a negative value indicates
an error. A positive value indicates
success with a warning.

visresult_obj.Info Property
Returns the nth numeric information
field contained in this set of results.

visresult_obj.InfoCount Property
Returns number of numeric
information items in this set of results.

visresult_obj.InspectActual Property
Returns the value of the tool property
that was tested in the vision
inspection process.

visresult_obj.InspectPassed Property
Returns True if a property of the
vision results satisfied the tool's vision
inspection criteria.

visresult_obj.Loc Property
Returns the position and orientation
from a set of results as a Cartesian
Location object.

visresult_obj.Type Property
Returns the type of this set of results.
Currently always zero.

Vision Classes

403

Vision.Disconnect Method

Closes the network connection to the PreciseVision system..

Vision.Disconnect

Prerequisites

None

Parameters

None

Remarks

This shared method closes any TCP/IP connection to PreciseVision. No error occurs if
there is currently no connection.

The Ethernet connection should always be closed when communication with
PreciseVision has been completed.

Examples

Vision.Disconnect

See Also

Vision Classes

GPL Dictionary Pages

404

vision_object.ErrorCode Property

Gets the Integer error code for the last executed vision process.

...vision_object.ErrorCode

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters

None

Remarks

This property returns the Integer error code for the last vision process executed by the
vision_object. A value of 0 indicates success; a negative value indicates an error. If no
process was ever run, a value of 0 is returned. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

This property is different from the visresults_object.ErrorCode. The
visresults_object.ErrorCode indicates if a specific Vision Tool encountered an error
during execution, e.g. it didn't find what it was searching for. The
vision_object.ErrorCode indicates if a vision process could not be found or if a
communication error occurred between GPL and PreciseVision. This property never
signals an error if an individual tool fails for whatever reason.

If the vision_object.Status property returns a value of 2, indicating that an error has
occurred, the ErrorCode property contains the specific error code that describes the type
of error.

Examples

Dim vobject As New Vision
vobject.Process("find_part") ' Execute find_part process
If vobject.ErrorCode <> 0 Then
 ' Handle error
End If

See Also

Vision Classes | vision_object.Status | visresult_object.ErrorCode

Vision Classes

405

vision_object.Process Method

Issues a request to PreciseVision to execute a vision process and waits for the process
to complete.

vision_object.Process(vision_process_name)

Prerequisites

The specified vision process must already be defined within the PreciseVision system.

Parameters

vision_process_name

A required String expression that specifies the name of the
PreciseVision process that is to be executed. This corresponds to the
name that is displayed in the "Process Manager" window in
PreciseVision.

Remarks

This method requests PreciseVision to execute the specified vision process. It then waits
until PreciseVision has completed the process. If PreciseVision does not respond within
30 seconds, an error exception is thrown.

Executing a vision process is the basic means that GPL utilizes to command
PreciseVision to take a picture and analyze it. From GPL's point of view, a vision process
is a single, indivisible operation. That is, after GPL starts a vision process, no results are
available until after the process completes its execution. When the process is done
running, GPL can then interrogate PreciseVision for information on the output of any
tool. Normally, a vision process consists of a command to take a picture (i.e. an
Acquisition Tool) followed by additional tools to process and analyze the picture. In the
simplest case, a process can consist of a single tool that operates on an existing picture.
At other times, a process can be quite complex and may consist of dozens of tools that
inspect multiple features of parts to verify that the part is correct.

In order for GPL to execute a process and retrieve the results, GPL has to know the
name that has been assigned to the process in PreciseVision and the names of any tools
for which results are desired.

Each time that a vision process is executed, all of the previous results of its tools are lost
and replaced by the newly computed results. However, if a different vision process is
executed using another Vision object, the results of first vision process are preserved.

The Status property can be used to determine if the process completed successfully.

The Process method performs communications with PreciseVision. If an Ethernet
network connection does not exist, a connection is automatically established. If a

GPL Dictionary Pages

406

connection cannot be setup or the communication link fails for any reason, this method
will throw an exception.

Examples

Dim vobject As New Vision
vobject.Process("find_part")
If vobject.Status <> 3 Then
 ' Deal with error
End If

See Also

Vision Classes | vision_object.Status

Vision Classes

407

vision_object.Result Method

Returns a VisResult Object that contains a single set of results from a vision tool.

...vision_object.Result(vision_tool_name, index, location_object)

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, a single set of results generated by that tool will
be returned. If omitted, a single set of results from the final tool in the
vision process is returned.

index

An optional numeric expression indicating which set of results to return
for the selected tool. The numeric value can range from 1 to
vision_object.ResultCount. If omitted, the first set is returned.

location_object

(Future enhancement) An optional Cartesian Location Object whose
value is sent to PreciseVision when the result is requested. Depending
on where the camera is mounted and the particular vision tool, this
location value may be used to determine the returned vision result.
Details on what value to pass in this parameter are described in the
PreciseVision documentation for specific vision tools.

Remarks

This method requests PreciseVision to return a set of results from a tool that was part of
the previously executed vision process. If the vision tool generated multiple sets of
results, the index parameter is utilized to specify the set of results to be returned. The
results data can be fetched any number of times from any tool that is part of the vision
process until the vision process is executed again. When a vision process is executed
again, all of the old results are lost and a new set of results data will be available.

When this method is executed, it returns a VisResult Object whose data can be
accessed by the standard properties and methods available for that object class.

GPL Dictionary Pages

408

For cameras mounted on a robot or for pictures of an object held by the robot, it may be
necessary to pass camera or robot location information to PreciseVision so that the result
location may be determined. In this case, the optional location_object parameter must be
specified.

The Status property can be used to determine if the previous vision process completed
successfully.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw an
exception.

Examples

Dim vobject As New Vision
Dim result As VisResult
vobject.Process("find_part")
result = vobject.Result() ' Get result 1 of final vision tool
result = vobject.Result("hole1") ' Get result 1 of vision tool "hole1"
result = vobject.Result(, 2) ' Get result 2 of final vision tool

See Also

Vision Classes | vision_object.Process

Vision Classes

409

vision_object.ResultCount Method

Gets the number of results generated by a vision tool in the last executed vision process.

...vision_object.ResultCount(vision_tool_name)

Prerequisites

A Process method must have been executed using the vision_object and the execution
must be completed.

Parameters

vision_tool_name

An optional String expression that specifies the name of a specific
PreciseVision tool that was executed in the vision process associated
with vision_object. The tool name must match one of those listed in the
PreciseVision "Process Manager" window for the executed process. If a
tool name is specified, the number of sets of results generated by that
tool will be returned. If omitted, the number of sets of results for the final
tool in the vision process is returned.

Remarks

This property returns the number of sets of results generated by a vision tool. This is the
same value as the PreciseVision ResultCount tool property.

A value of 0 indicates that no results are available or that some type of error occurred
when the tool was executed. Depending upon the basic type for the vision tool, zero,
one, or multiple sets of results may be generated each time the tool is executed. For
example, the tool that extracts the best fit line (i.e. the Line Fitter) will return at most one
set of results if a line can be fit or none if it is unsuccessful. On the other hand, the
general tool that locates parts (i.e. the Finder) can generate dozens of sets of results if
multiple identical parts are in the camera's field of view.

If one or more sets of results can be accessed, the Result method should be called as
many times as necessary to fetch the data for each set of results.

This property performs communications with PreciseVision. If an Ethernet network
connection does not exist, a connection is automatically established. If a connection
cannot be setup or the communication link fails for any reason, this method will throw an
exception.

Examples

Dim vobject As New Vision
Dim vresults As VisResult
Dim ii As Integer

GPL Dictionary Pages

410

Dim results As Integer
vobject.Process("find_part")

results = vobject.ResultCount()

For ii = 1 To results

 vresults = vobject.Result(,ii)
 ' Process results

Next ii

See Also

Vision Classes | vision_object.Status

Vision Classes

411

vision_object.Status Property

Gets the numeric status code for a vision process.

...vision_object.Status

Prerequisites

None

Parameters

None

Remarks

This method returns the status code for the vision process associated with the
vision_object. The returned status codes are as follows:

Status Code Description

0 No vision process for this object
1 Vision process is running
2 Vision process completed but with error
3 Vision process completed with success

At this time, the value 1 is not seen because the Process method always waits until the
vision process is complete. A no-wait vision process may be added as a future
enhancement.

If Status has a value is 2, the ErrorCode property can be used to determine the specific
type of error that has occurred. Note, this property returns an error if the process did not
exist or if a communication error occurs. However, if a specific tool fails, such as when a
Line Fitter cannot find enough edges to fit a line, Status does not indicate an error. For
tool analysis errors, please see the visresults_object.ErrorCode property.

Examples

Dim vobject As New Vision
vobject.Process("find_part")
If vobject.Status <> 3 Then
 ' Handle non-successful process
End If

See Also

Vision Classes | vision_object.ErrorCode | visresults_object.ErrorCode

GPL Dictionary Pages

412

Vision.ToolProperty Shared Property

Sets or gets a property value associated with a PreciseVision tool.

Vision.ToolProperty (property_name_string) = <property_value_string>
-or-
…Vision.ToolProperty (property_name_string)

Prerequisites

None

Parameters

property_name_string

A required String expression that contains the name of the tool property
to get or set. This String is normally in the form:
tool_name.property_name, where tool_name is the name of a tool
defined in PreciseVision, and property_name is the name of a property
within that tool.

Remarks

This property allows a GPL program to dynamically change the properties of a tool
defined within PreciseVision. This capability allows a GPL program to use the results of a
previous vision process to adjust or refine the tools used by a future vision process.

The vision tools available depend on what has been defined in your particular vision
application. The properties associated with each tool, and the possible property values
are described fully in the PreciseVision documentation.

Each time a ToolProperty procedure is invoked, messages are exchanged between the
Precise Controller and the PreciseVision system.

Examples

Dim prop As String
prop = Vision.ToolProperty("hist.angle")

See Also

Vision Classes

Vision Classes

413

visresult_object.ErrorCode Property

Gets the Integer error code for a vision results object.

...visresult_object.ErrorCode

Prerequisites

None

Parameters

None

Remarks

This property returns the Integer error code for the visresult_object. This is the same
value as the PreciseVision ResultErrorCode tool property.

A value of 0 indicates that the result was computed successfully and is valid. A positive
value indicates a non-critical error occurred during processing, but the result information
is valid. A negative value is a standard GPL error code and indicates an error occurred
when PreciseVision was computing the result. Please see the section on System Error
Codes in the Precise Documentation Library for a list of vision error codes and their
interpretation.

When a critical error occurs, the associated tool and all of the tools that are dependent
upon that tool are not processed. The dependent tools will also return a critical error
condition when they are queried. When a critical error is indicated, the other properties
for the visresult_object may not contain valid information.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.ErrorCode <> 0 Then
 ' Handle error
End If

See Also

Vision Classes | vision_object.ErrorCode

GPL Dictionary Pages

414

visresult_object.Info Property

Returns a Double value from the vision result object's numeric information array.

...visresult_object.Info(index)

Prerequisites

None

Parameters

index

A required numeric expression that specifies the array index for the
information element that is to be returned. The first array element has an
index of 0. This parameter must have a value greater than or equal to
zero.

Remarks

The common results values returned from the Vision Tools are accessed via standard
properties of the VisResults Objects, e.g. the position and orientation of the results are
available from visresult_object.Loc. However, some tools return special numeric data
that is specific to the tool. For example, the Finder Tool returns the X and Y scale factors
for the parts that it has located. This type of tool specific information is returned in the
visresult_object.Info array property.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that are returned in the Info
array and their array index values are highlighted.

Examples

Dim vresult As VisResult
vresult = vobject.Result() ' Get a tool's results
If vresult.Info(2) > .5 Then
 …

See Also

Vision Classes | visresult_object.InfoCount | visresult_object.Type

Vision Classes

415

visresult_object.InfoCount Property

Returns, as an Integer value, the number of elements in the vision result object's numeric
information array.

...visresult_object.InfoCount

Prerequisites

None

Parameters

None

Remarks

The visresult_object.InfoCount property returns the number of elements in the
visresult_object.Info array for the current vision result. The index values for accessing
the Info array range from 0 to InfoCount - 1.

Some tools return special numeric data, which is specific to the tool, in the
visresult_object.Info array property. Some of these tools, for example the Edge Finder
tool, can return a variable number of numeric values. The InfoCount property allows a
program to determine how many values are actually returned.

For information on what data a tool returns in this property and the index of the data,
please consult the "PreciseVision Machine Vision System, Introduction and Reference
Manual". In the detailed descriptions for each tool, properties that are returned in the Info
array and their array index values are highlighted.

Examples

Dim vresult As VisResult
Dim ii As Integer
vresult = vobject.Result() ' Get a tool's results
For ii = 0 To vresult.InfoCount-1
 Console.WriteLine(vresult.Info(ii))
Next ii

See Also

Vision Classes | vision_object.Info

GPL Dictionary Pages

416

visresult_object.InspectActual Property

Returns a Double that indicates the value of the tool property that was tested in the
vision inspection process.

...visresult_object.InspectActual

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectActual property in PreciseVision.

Parameters

None

Remarks

This property returns the value of the vision tool property that was tested for the
PreciseVision inspection process. This is the same value as the PreciseVision
InspectActual tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria. InspectActual is the property value
that was tested during this process. InspectPassed indicates the results of the test.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection failed?
 If vresult.InspectActual < 10 Then ' By how much?
 ...

See Also

Vision Classes | visresults_object.InspectPassed

Vision Classes

417

visresult_object.InspectPassed Property

Returns a Boolean that indicates if a property of the vision results satisfied the tool's
vision inspection criteria.

...visresult_object.InspectPassed

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the InspectPassed property in PreciseVision.

Parameters

None

Remarks

This property returns a True or False indication of whether or not the set of results from a
vision tool satisfied the specified inspection criteria. This is the same value as the
PreciseVision InspectPassed tool property.

For many PreciseVision tools, a range of acceptable values can be set for a single results
property for the tool. For example, for the general object Finder Tool, the orientation
angle of any located parts can be tested to ensure that they fall within a specified range.

When the inspection criteria is set, each time the tool is executed, it automatically tests
each set of results to see if it satisfies the criteria and sets the value of InspectPassed
appropriately. If the inspection fails, the tool is still processed in the normal fashion as
well as any tools that are dependent upon the failed result. However, both the failed tool
and any dependent tools will have their InspectPassed set to False.

As a convenience, the tool property value that was tested is returned in
visresults_object.InspectActual.

Examples

Dim vresult As VisResult
vresult = vobject.Result()

If vresult.InspectPassed = False Then ' Inspection failed?
 If vresult.InspectActual < 10 Then ' By how much?
 ...

See Also

Vision Classes | visresults_object.InspectActual

GPL Dictionary Pages

418

visresult_object.Loc Property

Returns a Location Object containing the position and orientation information from a
vision result object.

...visresult_object.Loc

Prerequisites

Only returns meaningful data for results generated by a vision tool whose output includes
the ResultAngle, ResultXPos, and ResultYPos properties in PreciseVision.

Parameters

None

Remarks

This property returns the position and orientation results data from a vision tool and
provides the information in the form of a Cartesian Location Object. The position and
orientation data are derived from the PreciseVision ResultXPos, ResultYPos and
ResultAngle tool properties.

While not all vision tools generate position and orientation data, many do. For example,
the general purpose object Finder tool returns the position and orientation of matched
parts. Likewise, the Point-Line Frame tool returns the position and orientation of its
computed reference frame.

To allow this data to be easily utilized within a GPL procedure, the Loc property returns a
Cartesian Location Object that is computed from the PreciseVision tool results but has
been translated into the robot's world reference frame. This translation is a defined by
PreciseVision's camera calibration data and the camera mounting (e.g., stationary, or
mounted on the robot). This Location can then be used as the reference frame for
gripping a part or can be combined with other data to perform further analysis.

Please see the PreciseVision manual for information on which vision tools return these
properties and how to interpret this data.

Examples

Dim vresult As VisResult
Dim visloc As Location
Dim x, y, z As Double
vresult = vobject.Result() ' Get a tool's results
visloc = vresult.Loc ' Get position/orientation output
x = visloc.X
y = visloc.Y
z = visloc.Z

See Also

Vision Classes

419

Vision Classes | visresult_object.Info

GPL Dictionary Pages

420

visresult_object.Type Property

Returns an Integer type code from a vision result object.

...visresult_object.Type

Prerequisites

None

Parameters

None

Remarks

This method returns the numeric Type code for a vision result object. Currently, all vision
results are of type 0, so this property always returns 0.

This property will be used in the future to enhance the VisResult class.

Examples

Dim vresult As VisResult
vresult = vobject.Result()
If vresult.Type = 0 Then
 ...

See Also

Vision Classes

	The Guidance Programming Language
	GPL Dictionary Pages
	GPL Dictionary Pages Summary
	Array Class
	Array Class Summary
	array.GetUpperBound Property
	array.Length Property
	array.Rank Property

	Console Class
	Console Class Summary
	Console.Write Method
	Console.WriteLine Method

	Controller Class
	Controller Class Summary
	Controller.ErrorLog Property
	Controller.Load Method
	Controller.PDb Property
	Controller.PDbNum Property
	Controller.PowerEnabled Property
	Controller.PowerState Property
	Controller.RecordButton Property
	Controller.ShowDialog Method
	Controller.ShowDialogMCP Method
	Controller.SleepTick Method
	Controller.SoftEStop Property
	Controller.SystemMessage Method
	Controller.Tick Property
	Controller.Timer Property
	Controller.Unload Method

	Exception Handling
	Exception Handling Summary
	Catch Statement
	End Try Statement
	Exit Try Statement
	Finally Statement
	Throw Statement
	Try..Catch..Finally..End Try Statements
	exception_object.Axis Property
	exception_object.Clone Method
	exception_object.ErrorCode Property
	exception_object.Message Method
	exception_object.Qualifier Property
	exception_object.RobotError Property
	exception_object.RobotNum Property

	File and Serial I/O Classes
	File and Serial I/O Classes Summary
	File.CreateDirectory Method
	File.DeleteDirectory Method
	File.DeleteFile Method
	File.GetDirectories Method
	File.GetFiles Method
	New StreamReader Constructor
	streamreader_object.Close Method
	streamreader_object.Peek Method
	streamreader_object.Read Method
	streamreader_object.ReadLine Method
	New StreamWriter Constructor
	streamwriter_object.AutoFlush Property
	streamwriter_object.Close Method
	streamwriter_object.Flush Method
	streamwriter_object.NewLine Property
	streamwriter_object.Write Method
	streamwriter_object.WriteLine Method

	Functions
	Function Summary
	CBool Function
	CByte Function
	CDbl Function
	CInt Function
	CShort Function
	CSng Function
	CStr Function
	Fix Function
	Hex Function
	Int Function
	Rnd Function

	Location Class
	Location Class Summary
	location_object.Angle Property
	location_object.Angles Method
	location_object.Clone Method
	location_object.Config Property
	Location.Distance Method
	location_object.Here Method
	location_object.Here3 Method
	location_object.Inverse Method
	location_object.KineSol Method
	location_object.Mul Method
	location_object.Normalize Method
	location_object.Pitch Property
	location_object.Pos Property
	location_object.PosWrtRef Property
	location_object.RefFrame Property
	location_object.Roll Property
	location_object.Type Property
	location_object.X Property
	location_object.XYZ Method
	location_object.XYZInc Method
	Location.XYZValue Method
	location_object.Y Property
	location_object.Yaw Property
	location_object.Z Property
	location_object.ZClearance Property
	location_object.ZWorld Property

	Math Class
	Math Class Summary
	Math.Abs Method
	Math.Acos Method
	Math.Asin Method
	Math.Atan Method
	Math.Atan2 Method
	Math.Ceiling Method
	Math.Cos Method
	Math.Cosh Method
	Math.E Method
	Math.Exp Method
	Math.Floor Method
	Math.Log Method
	Math.Log10 Method
	Math.Max Method
	Math.Min Method
	Math.PI Method
	Math.Pow Method
	Math.Sign Method
	Math.Sin Method
	Math.Sinh Method
	Math.Sqrt Method
	Math.Tan Method
	Math.Tanh Method

	Modbus Class
	Modbus Class Summary
	modbus_object.Close Method
	modbus_object.ReadCoils Method
	modbus_object.ReadDeviceID Method
	modbus_object.ReadDiscreteInputs Method
	modbus_object.ReadHoldingRegisters Method
	modbus_object.ReadInputRegisters Method
	modbus_object.Timeout Property
	modbus_object.WriteMultipleCoils Method
	modbus_object.WriteMultipleRegisters Method
	modbus_object.WriteSingleCoil Method
	modbus_object.WriteSingleRegister Method

	Move Class
	Move Class Summary
	Move.Approach Method
	Move.Arc Method
	Move.Circle Method
	Move.Delay Method
	Move.Extra Method
	Move.ForceOverlap Method
	Move.Loc Method
	Move.OneAxis Method
	Move.Rel Method
	Move.SetJogCommand Method
	Move.SetSpeeds Method
	Move.SetTorques Method
	Move.StartJogMode Method
	Move.StartTorqueCntrl Method
	Move.StartVelocityCntrl Method
	Move.StopSpecialModes Method
	Move.Trigger Method
	Move.WaitForEOM Method

	Networking Classes
	Networking Classes Summary
	New IPEndPoint Constructor
	ipendpoint_object.IPAddress Property
	ipendpoint_object.Port Property
	socket_object.Available Property
	socket_object.Blocking Property
	socket_object.Close Method
	socket_object.Connect Method
	socket_object.Receive Method
	socket_object.ReceiveFrom Method
	socket_object.ReceiveTimeout Property
	socket_object.Send Method
	socket_object.SendTimeout Property
	socket_object.SendTo Method
	New TcpClient Constructor
	tcpclient_object.Client Method
	tcpclient_object.Close Method
	New TcpListener Constructor
	tcplistener_object.AcceptSocket Method
	tcplistener_object.Close Method
	tcplistener_object.Pending Property
	tcplistener_object.Start Method
	tcplistener_object.Stop Method
	New UdpClient Constructor
	udpclient_object.Client Method
	udpclient_object.Close Method

	Profile Class
	Profile Class Summary
	profile_object.Accel Property
	profile_object.AccelRamp Property
	profile_object.Clone Method
	profile_object.Decel Property
	profile_object.DecelRamp Property
	profile_object.InRange Property
	profile_object.Speed Property
	profile_object.Speed2 Property
	profile_object.Straight Property

	Reference Frame Class
	RefFrame Class Summary
	refframe_object.Loc Property
	refframe_object.PalletIndex Property
	refframe_object.PalletMaxIndex Property
	refframe_object.PalletNextPos Method
	refframe_object.PalletOrder Property
	refframe_object.PalletPitch Property
	refframe_object.PalletRowColLay Method
	refframe_object.Pos Method
	refframe_object.PosWrtRef Method
	refframe_object.Type Property

	Robot Class
	Robot Class Summary
	Robot.Attached Property
	Robot.Base Property
	Robot.Custom Property
	Robot.DefLinComp Method
	Robot.Dest Property
	Robot.DestAngles Property
	Robot.Home Method
	Robot.HomeAll Method
	Robot.LastProfile Property
	Robot.RapidDecel Property
	Robot.RestartBase Property
	Robot.RestartTool Property
	Robot.Selected Property
	Robot.Source Property
	Robot.SourceAngles Property
	Robot.Tool Property
	Robot.TrajState Property
	Robot.Where Property
	Robot.WhereAngles Property

	Signal Class
	Signal Class Summary
	Signal.AIO Property
	Signal.DIO Property

	Statements
	Statements Summary
	Call Statement
	Class Statement
	Const Statement
	Dim Statement
	Do...Loop Statements
	Else, ElseIF Statements
	End Statements
	Exit Statements
	For...Next Statements
	Function Statement
	Get Statement
	GoTo Statement
	If..Then...Else...End If Statements
	Loop Statements
	Module Statement
	Next Statements
	Property Statement
	ReDim Statement
	Return Statement
	Set Statement
	Sub Statement
	While...End While Statements

	Strings
	String Summary
	String.Compare Method
	string.IndexOf Method
	string.Length Property
	string.Split Method
	string.Substring Method
	string.ToLower Method
	string.ToUpper Method
	string.Trim Method
	string.TrimEnd Method
	string.TrimStart Method
	Asc Function
	Chr Function
	Format Function
	Instr Function
	LCase Function
	Len Function
	Mid Function
	UCase Function

	Thread Class
	Thread Class Summary
	New Thread Constructor
	thread_object.Abort Method
	Thread.CurrentThread Shared Method
	thread_object.Join Method
	thread_object.Resume Method
	thread_object.SendEvent Method
	Thread.Sleep Shared Method
	thread_object.Start Method
	thread_object.Suspend Method
	thread_object.ThreadState Property
	Thread.WaitEvent Shared Method

	Vision Classes
	Vision Classes Summary
	Vision.Disconnect Method
	vision_object.ErrorCode Property
	vision_object.Process Method
	vision_object.Result Method
	vision_object.ResultCount Method
	vision_object.Status Property
	Vision.ToolProperty Shared Property
	visresult_object.ErrorCode Property
	visresult_object.Info Property
	visresult_object.InfoCount Property
	visresult_object.InspectActual Property
	visresult_object.InspectPassed Property
	visresult_object.Loc Property
	visresult_object.Type Property

